SDM College OF Engineering & Technology Dharwad-580002

Department of Information Science & Engineering

Employability/Entrepreneurship/Skill Development Courses Introduced – (Last 5 years)

> Dr. Jagadeesh D. Pujari HOD, ISE

Sl.No	Name of the Course	Course Code	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development	Year of introduction (during the last five years)	Link to the relevant document
			\mathbf{UG}		
1	Programming in Java	15UISC504	Employability/ Skill development		
2	Java Lab	15UISL506	Employability/ Skill development		
3	Mini Project-I	15UISL507	Employability/ Entrepreneurship/ Skill development	2017-18	
4	Unix Systems Programming	15UISE620	Skill development		
5	Advanced DBMS	15UISE624	Employability/ Skill development		
6	Agile Technology	11UISE763	Skill development		
1	Machine Learning	15UISC800	Employability/ Skill development	2018-19	
2	Machine Learning Lab	15UISL803	Employability/ Skill development	2010-19	
3	Artificial Intelligence	15UISE851	Skill development		
1	Unix &Shell Programming	18UISC303	Employability/ Skill development	2019-20	
2	Operating System	18UISC404	Employability/ Skill development	2019-20	
3	Introductory Project	18UISL407	Employability/ Skill development		
1	Software Engineering	18UISC500	Employability/ Skill development		
2	Java and Web Technology	18UISC501	Employability/ Skill development		
3	Computer Networks	18UISC503	Employability/ Skill development		
4	Advanced Data Structures	18UISE512	Employability/ Skill development	2020-21	
5	Artificial Intelligence and Machine Learning	18UISC600	Employability/ Skill development	2020-21	
6	Internet of Things	18UISC601	Employability/ Skill development		
7	Computer Networks Lab	18UISL602	Employability/ Skill development		
8	Object Oriented Modeling and Design	18UISE621	Skill development		
9	Agile Methodologies	18UISO633	Entrepreneurship/ Skill development		
1	Internship	18UISL704	Entrepreneurship/ Skill development		
2	Deep Learning	18UISE713	Skill development	2021 22	
3	Cryptography and Cyber Security	18UISC800	Employability/ Skill development	2021-22	
4	Block Chain management	18UISE812	Employability/ Skill development		
5	Data Science	18UISO822	Skill development		
			PG		
1	Big Data Analytics	18PITEC100	Employability/ Skill development	2018-19	

2	Agile Technology	18PITEE125	Employability/ Skill development		
3	Artificial Intelligence	18PITEE129	Employability/ Skill development		
4	Data Analytics Lab	18PITEL102	Employability/ Skill development		
1	Cloud Computing	20PITE126	Employability/ Skill development		
2	Storage Technologies	20PITE127	Employability/ Skill development	2020-21	
3	Internet of Things	20PITC201	Employability/ Skill development		
4	Data Science	20PITE225	Employability/ Skill development		

	2021-22	2020-21	2019-20	2018-19	2017-18
EES	5(UG)	4(PG),9(UG)	3(UG)	3(UG), 4(PG)	6(UG)
Total Courses	48(UG),21(PG)	21(PG) ,50(UG)	47(UG), 19(PG)	46(UG), 19(PG)	45(UG)
Percentage	10 %(UG)	19%(PG), 18%(UG)	6%(UG)	7%(UG), 21%(PG)	13 %(UG)

Dr. Jagadeesh D. Pujari HOD, ISE

UG-2017-18 Scheme for III Semester

			Teachi	ng			Exami	ination	
Course	Course	Course Title	L-T-P		CIE	Theor	ry (SEE)	Pra	actical (SEE)
Code	Category		(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration
			(IIIS/ WEEK)		Marks	Marks	in hours	Marks	in hours
		Engineering							
15UMAC300	PC	Mathematics-	4-0-0	4	50	100	3		
		III							
15UISC300	PC	Data	3-2-0	4	50	100	3		
13013C300	PC	Structures	3-2-0	4	30	100	3		
15UISC301	DC	Digital	3-0-0	3	50	100	3		
15018C301	PC	Circuits	3-0-0	3	30	100	3		
		Discrete	4-0-0						
15UISC302	PC	Mathematical		4	50	100	3		
13013C302		& Graphical		7	30	100	3		
		Structures							
15UISC303	PC	Computer	4-0-0	4	50	100	3		
130130303	rc	Organization	4-0-0	4	30	100	3		
15UISC304	PC	Digital	0-0-3	1.5	50			50	3
130130304	10	Circuits Lab	0-0-3	1.5	30			30	3
		Data							
15UISC305	PC	Structures	0-0-3	1.5	50			50	3
		Lab	_						
15UISC306	PC	Unix/Linux	1-0-2	2	50			50	3
130130300	10	Lab	1-0-2	<u> </u>	50			30	J
	Total		19-2-8	24	400	500		150	

Scheme for IV Semester

			Teachi	ing		F	Examinati	ion	
Course	Course	Course Title	L-T-P		CIE	Theor	y (SEE)	Practio	cal (SEE)
Code	Category	Course Title	L-1-P (Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration
			(III S/ VV CCK)		Marks	Marks	in hours	Marks	In hours
15UMAC400	PC	Engineering Mathematics - IV	4-0-0	4	50	100	3		
15UISC400	PC	Object Oriented Programming	4-0-0	4	50	100	3		
15UISC401	PC	Analysis and Design of Algorithms	3-0-2	4	50	100	3		
15UISC402	PC	Data Communication	4-0-0	4	50	100	3		
15UISC403	PC	Microcontroller 8051	4-0-0	4	50	100	3		
15UISC404	PC	Finite Automata and Formal Language	3-2-0	4	50	100	3		
15UISL405	PC	Microcontroller Laboratory	0-0-3	1.5	50			50	3
15UISL406	PC	Object Oriented Programming Laboratory	0-0-3	1.5	50			50	3
	Total		22-2-8	27	400	600		100	

CIE: Continuous Internal Evaluation

SEE: Semester End Examination*

L: Lecture

T: Tutorials **P**: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

CIE: Continuous Internal Evaluation

SEE: Semester End Examination* L: Lecture

T: Tutorials

P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

BS- Basic Science, PC- Program Core

Scheme for V Semester

			Teachi	ng	Examination				
Course	Course	Course Title	L-T-P		CIE	Theory (SEE) Practical (S		cal (SEE)	
Code	Category		(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration
		(HIS/V			Marks	Marks	in hours	Marks	in hours
		Management,		4					
15UISC500	PC	Entrepreneurship and	4-0-0		50	100	3		
130130300	rc	Intellectual Property	4-0-0			100	3		
		Rights							
15UISC501	PC	Operating Systems	4-0-0	4	50	100	3		

15UISC502	PC	Database Management System	4-0-0	4	50	100	3		
15UISC503	PC	System software	4-0-0	4	50	100	3		
15UISC504	PC	Programming in Java	4-0-0	4	50	100	3		
15UISL505	PC	Database Management System Lab	0-0-2	1	50			50	3
15UISL506	PC	<mark>Java Lab</mark>	0-0-2	1	50			50	3
15UISL507	PC	Mini project – I	0-0-6	4	50	100	3		
	Total		20-0-10	26	400	600		100	

Scheme for VI Semester

			Teachi	ing		F	Examinati	ion	
Course	Course	Course Title	L-T-P		CIE	Theory (SEE)		Practical (SEE)	
Code	Category	Course Title		Credits	Max.	*Max.	Duration	Max.	Duration
			(Hrs/Week)		Marks	Marks	in hours	Marks	In hours
15UISC600	PC	Web Technology	4-0-0	4	50	100	3		
15UISC601	PC	File structures	3-0-2	4	50	100	3		
15UISC602	PC	Software	4-0-0	4	50	100	3		
13013002	10	Engineering	4-0-0	4	30	100	3		
15UISC603	PC	Computer	3-0-0	3	50	100	3		
13013003	10	Networks	3-0-0	3		100	3		
15UISL604	PC	Web Technology	0-0-2	1	50			50	3
130131.004	10	Lab	0-0-2	1	30			30	3
15UISL605	PC	Mini Project-II	0-0-6	4	50			50	3
15UISE6XX	PE	Elective – I	4-0-0	4	50	100	3		
15UISE6XX	PE	Elective – II	4-0-0	4	50	100	3		
	Total		22-0-10	28	400	600		100	

Code	Elective – I	Code	Elective –II
15UISE620	Unix Systems	15UISE623	Computer Graphics
130132020	Programming	130131023	Computer Graphics
15UISE621	Advanced Computer	15UISE624	Advanced Data Base Management System
1301312021	Architecture	13013E024	Advanced Data Base Management System
15UISE622	Advanced Data	15UISE625	System simulation and Modeling
13013E022	Structures	1301SE023	System simulation and Wodeling

Scheme for VII Semester

		Teachi	ng	Examination					
Course Code	Course Title	L-T-P-S		CIE	Theor	y (SEE)	Practical (SEE)		
Course Code		(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration	
		(HIS/VVEEK)		Marks	Marks	in hours	Marks	In hours	
11UISC701	Network Security and Cryptography	4-0-0-0	4	50	100	3			
11UISC702	Data Mining	3-0-0-0	3	50	100	3			
11UISC706	Cloud Computing	3-0-0-0	3	50	100	3			
11UISL703	Project Phase I	0-0-6-0	4	50			50	3	
11UISL704	Computer Networks Lab	0-0-2-0	1	50			50	3	
11UISL705	Data Mining and Machine Learning Tools Lab	1-0-2-0	2	50			50	3	
11UISE7XX	Elective-V	4-0-0-0	4	50	100	3			
11UISE7XX Elective-VI		4-0-0-0	4	50	100	3			
	Total		25	400	500		150		

Code	Elective – V	Code	Elective –VI
11UISE750	Digital Image Processing	11UISE760	Mobile computing
11UISE751	Information Storage	1111100761	Network Management
1101312/31	Management	1101312701	Network Management
11UISE752	Software Testing	11UISE762	Compiler design
		11UISE763	Agile Technology

CIE: Continuous Internal Evaluation

SEE: Semester End Examination*

L: Lecture T: Tutorials P: Practical

^{*}SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

Scheme for VIII Semester

		Teach	ning	Examination					
Course Code	Course Title	LTDG		CIE	Theor	y (SEE)	Practical (SEE)		
	Course Title	L-T-P-S (Hrs/Week)	Credits	Max. Marks	*Max. Marks	Duration in hours	Max. Marks	Duration In hours	
11UISC800	Big Data Analytics	3-0-0-0	03	50	100	3			
11UISL801	Project Phase II	0-0-10-0	10	50			50	3	
11UISL802	Seminar	0-0-3-0	02	50					
11UISE8XX	Elective-VII	4-0-0-0	04	50	100	3			
11UISE8XX	Elective-VIII	4-0-0-0	04	50	100	3			
	Total	11-0-13-0	23	250	300		50		

Code	Elective courses-VII	Code	Elective courses-VIII
11UISE850	Business intelligence **	11UISE860	Software architecture
11UISE851	Mobile and Ad Hoc Networks	11UISE861	Data Science
11UISE852	Internet of Things	11UISE862	Wireless Sensor Networks

CIE: Continuous Internal Evaluation
L: Lecture
T: Tutorials
P: Practical
S: Self-study

Total Credits offered for the Fourth year: 48

Note: Interdisciplinary Elective open for all Engineering Branches
11UMAE875 Applied Numerical Methods (VIII Sem)

11UPHE876 Nanotechnology (VIII Sem)

^{*}SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

^{**} Open elective

Course Learning Objectives: Student should understand the Object Oriented Principles, able to program Java classes and methods and conditionals and experiencing the importance of Object Oriented 4G languages like Java & in developing GUI applications.

Course Outcomes:

									Ma	appin	g to Pr	ogram	Outcon	ne
ID		Desc	riptio		e Cou tcome	rse			bstanti Level (lerate rel (2)		light el (1)
CO-1	Illusti	ate	j	ava	la	ınguag	ge							
	consti	onstructs and multi threading					ıg	3			1,	2		3
CO-2			and My	ySql da	atabase	e		1			2,:	3,		
CO-3		plement the concepts of OOP					1		2,	3		2		
	using	java la	anguag	ge.					1		2,	<i>J</i>		
CO-4	Desig	n GUI	applic	cations	S.				1		2,	3		
PO →	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO13	PSO14
Mappin g	2.8	2.8 2.5 2.25											2.5	1.0
Level														

Pre-requisites:

- 1. Object -Oriented Programming
- 2. Basic programming skills

Contents:

1) Introduction to Java: Java and Java applications; Java Development Kit (JDK); Java is interpreted, Byte Code, JVM; Object-oriented programming; Simple Java programs. Data types and other tokens: Boolean variables, int, long, char, operators, arrays, whitespaces, literals, assigning values; Creating and destroying objects; Access specifiers. Operators and Expressions: Arithmetic Operators, Bitwise operators, Relational operators, The Assignment Operator, The? Operator; Operator Precedence; Logical expression; Typecasting; Strings. Control Statements: Selection statements, iteration statements, Jump Statements

10 Hrs.

2) Classes, Inheritance: Classes: Classes in Java; Declaring a class; Class name; Super classes; Constructors; Creating instances of class; Inner classes. overloading Inheritance: Simple, multiple, and multilevel inheritance; Overriding interfaces Packages - Access Protection - Importing Packages -

8 Hrs.

3) Exception handling in Java: Exception Handling-Exception Types, Uncaught Exceptions, Try and catch, Multiple catch Clauses, Nested try Statements, Exception sub Classes,

8 Hrs.

4) Multi Threaded Programming: Multi Threaded Programming: What are threads? How to make the classes threadable; Extending threads; Implementing runnable; Thread priority; Thread exception; Synchronization;

8 Hrs.

- 5) GUI Programming: Designing Graphical User Interfaces in Java, Components and Containers, Basics of Components, Using Containers, Layout Managers, AWT Components, Adding a Menu to Window, Extending GUI Features Using Swing Components, Java Utilities
 10 Hrs.
- **6)** MySQL and JDBC: The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief Overview of the JDBC process; Database Connection; Associating the JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet; Metadata, **8 Hrs.**

Reference books:

- **1)** Herbert Schildt: Java The Complete Reference, 7th Edition, Tata McGraw Hill, 2007. (Chapters 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 19).
- **2)** Jim Keogh: J2EE The Complete Reference, Tata McGraw Hill, 2007.(Chapters 5, 6, 11).

Course Learning Objectives: Student should understand the Object Oriented Principles, able to program Java classes and methods and conditionals and experiencing the importance of Object Oriented 4G languages like Java & in developing GUI applications

Course Outcomes:

									Maj	pping	g to Pro	gram O	utcom	e
ID		Descr	ription		Cour come	se		Substa Lev	antial el (3)			lerate el (2)		ight el (1)
CO-1	Illustr	ate	jav	a	langu	age								
	consti	structs and multi threading					3				1,2	2	3	
CO-2	Use databa		BC applic	and ations.		IySql		1			2,3	3		
CO-3	Imple OOP		the ava lar		cepts	of		1			2,3	3	2	2
CO-4	Desig	n GUI	applic	ations.				1			2,3	3		
PO →	PO 1	PO 2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO1 4
Mapping Level		2.5	2.25							U			1.5	1.0

Pre-requisites:

- 1. Object -Oriented Programming
- 2. Basic programming skills.

Contents:

- **1)** Programs on Classes,
- **2)** Programs on Exceptions
- **3)** Programs on Inheritance
- **4)** Programs on Multi Threaded Programming
- **5)** Programs on Swings
- **6)** Programs on MySQL and JDBC

Reference Books:

- 1) Herbert Schildt: "Java The Complete Reference", 7/e, Tata McGraw Hill 2012.
- 2) Jim Keogh: "J2EE The Complete Reference", 7/e Edition Tata McGraw Hill, 2012.

Course Learning Objectives: Understand programming language concepts, particularly Java and object-oriented concepts. Plan, analyze, design and implement a software project. Demonstrate independent learning. Demonstrate the ability to locate and use technical information from multiple sources. Demonstrate an understanding of professional ethics. Participate in a class or project team. Demonstrate the ability to communicate effectively in speech. Demonstrate the ability to communicate effectively in writing. Learn to work as a team and to focus on getting a working project done on time with each student being held accountable for their part of the project. Learn about and go through the software development cycle with emphasis on different processes requirements, design, and implementation phases. Gain confidence at having conceptualized, designed, and implemented a working, medium sized project with their team.

Course Outcomes:

								M	appi	ng to	Progra	am Ou	tcome	
Des	criptio	n of th	ie Coii	rse Oi	utcom	բ	Subs	tantia	al Le	vel	Moder	ate	Slight	Level
Des	СПРИО		ic Cou	150 0				(3))		Level	(2)	(1	l)
	Apply	prob	lem	solv	ing	and								
	progra proble:	_		ls for	ide	ntified		2, 1	3		1		1	4
CO-2	Desigr	•				an		3			4		1	
CO-2	identif	ied req	uireme	ent				3			4]	
CO-3	Analy	ze and	Incor	porate	e the cl	hanges			_					
CO-4	Demo	nstrate	2	an	ability	to		9			171		1	1
CO-4	work i	n a tea	m					9					1	1
	Demo	nstrate	9	an a	ability	to								
CO-5	presen	t the v	work c	carried	out b	oth in		10					1	1
	writter	and o	ral for	m.				10	,				1	1
PO →	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO13	PSO14
Mapping Level	1.33	3	3	2.5	3				3	1			2.5	1

Prerequisites:

1. C, C++, Data Structures.

Course Learning Objectives: In this course, students will learn to develop complex system-level software in the C programming language while gaining an intimate understanding of the UNIX operating system and its programming environment, topics covered will include the user/kernel interface, fundamental concepts of UNIX, user authentication, basic and advanced I/O, file systems, signals, process relationships, and inter-process communication. Fundamental concepts of software development and maintenance on UNIX systems.

Course Outcomes:

								N	Aappi	ng to	Progr	ram (Outcom	ie
D	escrip	otion o	f the C	ourse	Outco	me		Substa	antial	Mo	derate	e S	Slight I	Level
								Leve	l (3)	Le	vel (2))	(1)	
CO-1	De	escribe	variou	is POS	IX and	UNIX		1						
	stand	ards, U	NIX F	ile syst	tem, Pr	ocess a	and							
	con	trol, sig	gnals a	nd daei	mon pr	ocesse	s.							
CO-2	Illu	control, signals and daemon procest llustrate the characteristics of var API's and system calls.					1S			1	, 13		3	
		API's and system calls. Vrite C/C++ programs												
CO-3	Wri	te	C/C++	pı	ogram	S	in							
	U	JNIX/P	OSIX	platfor	m to us	se and		1.	3		2		1, 3	3
		implen	nent va	rious s	ystem (calls.								
CO-4	Demo	onstrat	e race	conditi	ons, ex	ec syst	tem							
	calls	s, job c	ontrol,	signals	s and p	rocesse	es	1.	3		2		1, 3	3
		throug	h diffe	rent sy	stem c	alls.								
PO →	PO1	through different system calls. PO1 PO2 PO3 PO4 PO5 PO6						PO8	PO9	PO10	PO11	PO12	PSO13	PSO14
Mapping	1.75	1.75 2 1											2	
Level														

Pre-requisites:

- 1) This course requires programming in C/C++.
- 2) Operating system fundamentals and UNIX shell commands.

Contents:

1) Introduction: UNIX and ANSI Standards: The ANSI C Standard, The ANSI/ISO C++ Standards, Difference between ANSI C and C++, The POSIX Standards, The POSIX.1 FIPS Standard, The X/Open Standards. UNIX and POSIX APIs: The POSIX APIs, the UNIX and POSIX Development Environment, API Common Characteristics.

6 Hrs.

12 Hrs.

2) UNIX Files: File Types, The UNIX and POSIX File System, The UNIX and POSIX File Attributes, Inodes in UNIX System V, Application Program Interface to Files, UNIX Kernel Support for Files, Relationship of C Stream Pointers and File Descriptors, Directory Files, Hard and Symbolic Links.UNIX File APIs: General File APIs, File and Record Locking, Directory File APIs, Device File APIs, FIFO File APIs, Symbolic Link File APIs.

3) UNIX Processes: The Environment of a UNIX Process: Introduction, main function, Process Termination, Command-Line Arguments, Environment List, Memory Layout of a C Program, Shared Libraries, Memory Allocation, Environment Variables, setjmp and longjmp Functions, getrlimit, setrlimit Functions, UNIX Kernel Support for Processes.

6 Hrs.

4) Process Control: Introduction, Process Identifiers, fork, vfork, exit, wait, waitpid, wait3, wait4 Functions, Race Conditions, exec Functions, Changing User IDs and Group IDs, Interpreter Files, system Function, Process Accounting, User Identification, Process Times. Process Relationships: Introduction, Terminal Logins, Network Logins, Process Groups, Sessions, Controlling Terminal, tegetpgrp and tesetpgrp Functions, Job Control, Orphaned Process Groups.

10 Hrs.

- 5) Signals and Daemon Processes: Signals: The UNIX Kernel Support for Signals, signal, Signal Mask, sigaction, The SIGCHLD Signal and the waitpid Function, The sigsetjmp and siglongjmp Functions, Kill, Alarm, Interval Timers, POSIX.lb Timers. Daemon Processes: Introduction, Daemon Characteristics, Coding Rules, Error Logging.
 8
 Hrs.
- **6) Network programming:** IP Addresses, structs, and Data Munging -IP Addresses, versions 4 and 6, Byte Order, structs, IP Addresses, Part Deux, Header files, Socket API functions socket, bind, listen, accept, connect, gethostbyname and gethostbyaddr, Protocol and address families, Raw sockets, Options for sockets, Blocking and non-blocking mode, Terminating sockets, Client-server example using TCP, Client-server example using UDP. **10 Hrs.**

Beyond the Syllabus Coverage:

1. Linux command implementation / Demonstrator of open source software from students

Reference books:

- **1)** W. Richard Stevens, Stephen A. Rago," Advanced Programming in the UNIX Environment", 2/e, Addison-Wesley, 2005.
- 2) Terrence Chan," Unix System Programming Using C++", Prentice Hall India, 1999.
- **3)** Maurice. J. Bach," The Design of the UNIX Operating System", Prentice Hall of India, 1988.
- 4) Uresh Vahalia," Unix Internals", Pearson Education, 2001.
- **5)** Beej's Guide to Network Programming, Using Internet Sockets

Course Learning Objectives:

- 1. Define parallel and distributed databases and its applications.
- 2. Show applications of Object Oriented database.
- 3. Explain basic concepts, principles of intelligent databases.
- 4. Utilize the advanced topics of data warehousing and mining.

Infer emerging and advanced data models.

Course Outcomes: Upon the completion of the course, the student should be able to,

								Mapping 1	to Pı	rograi	m Outc	ome
ID		Descrip	tion of tl Outcom		se		St	ubstantial Lev (3)	vel		erate el (2)	Slight Level (1)
CO-1	Select	the appr	opriate h	igh perfo	ormance							
	data	database like parallel and distributed										1
		database.										
CO-2	Infer an	database. fer and represent the real world data usi										
		obj	ect orien	ted datab	oase.					3	3	2
CO-3	Outline	the diff	erent dat	a mining	and dat	a						
		wa	rehouse a	application	ons.			1				
CO-4	Extend	l to learn	enhance	d data m	odels fo	r						
		S	ome adva	anced ap	plication	ıs.						3
CO-5	Appl	y PL/SQ	L for diff	erent da	tabases.			3				
$PO \rightarrow$	PO1	Apply PL/SQL for different databases. PO1 PO2 PO3 PO4 PO5				PC)6	PO7	PO8	PO9	PO10	PO11
Mapping	1	1 1 2.5 2										
Level												

Pre-requisites:

Database Management Systems, SQL.

Contents:

1. Review of Relational Data Model and Relational Database Constraints: Relational model concepts; Relational model constraints and relational database schemas; Update operations, anomalies, dealing with constraint violations, Types and violations. Overview of Object-Oriented Concepts — Objects, Basic properties. Advantages, examples, Abstract data types, Encapsulation, class hierarchies, polymorphism, examples.

8 Hrs

2. Object and Object-Relational Databases: Overview of OOP; Complex objects; Identity, structure etc. Object model of ODMG, Object definition Language ODL; Object Query Language OQL; Conceptual design of Object database. Overview of object relational features of SQL; Object-relational features of Oracle; Implementation

- and related issues for extended type systems syntax and demo examples, The nested relational model. Overview of C++ language binding;**8 Hrs**
- **3.** Parallel and Distributed Databases: Architectures for parallel databases; Parallel query evaluation; Parallelizing individual operations; Parallel query optimizations; Introduction to distributed databases; Distributed DBMS architectures; Storing data in a Distributed DBMS; Distributed catalog management; Distributed Query processing; Updating distributed data; Distributed transactions; Distributed Concurrency control and Recovery.

8 Hrs

4. Data Warehousing, Decision Support and Data Mining: Introduction to decision support; OLAP, multidimensional model; Window queries in SQL; Finding answers quickly; Implementation techniques for OLAP; Data Warehousing; Views and Decision support, View materialization, Maintaining materialized views. Introduction to Data Mining; Counting co-occurrences; Mining for rules; Tree-structured rules; ROC and CMC Curves; Clustering; Similarity search over sequences; Incremental mining and data streams; Additional data mining tasks.

8 Hrs

5. Enhanced Data Models for Some Advanced Applications: Active database concepts and triggers; Temporal, Spatial, and Deductive Databases – Basic concepts. More Recent Applications: Mobile databases; Multimedia databases; Geographical Information Systems; Genome data management.

8 Hrs

6. PL/SQL: Basics, Cursors, Exceptions, Subprograms, Packages.

12 Hrs

Books:

- 1. Elmasri and Navathe: Fundamentals of Database Systems, Pearson Education, 2013.
- 2. Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw-Hill, 2013.

Reference:

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan: Database System Concepts, 6th Edition, McGraw Hill, 2010.

11UISE763	Agile Technology	(4-0-0-0) 4 : 52 Hrs.
-----------	------------------	-----------------------

Course Learning Objectives: To promote new software development technique that encourages the adaptive planning, evolutionary development and fast delivery of a software product which is a time-boxed iterative approach, and encourages rapid and flexible response to change.

Course Outcomes:

	3.6
	Mapping to Program Outcome

ID	I		-	n of th			Su	lbstanti Level		N	Modera Leve		Slig L (1	evel
CO-1	incre proce leads	ement ess s to fa	al dev ster d	an it velopr leliver tware	ment ry of	ve,		5						
CO-2	pract	nplentices of	of ext	orinci _j reme	oles a	nd					7			
CO-3	proto	otypin ess	ıg in t	roles he so									Ģ)
CO-4	To conc		nderst f Mas	tand tering	Agil	the ity							4	5
PO →	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO13	PSO14
Mappin g Level					2		2		1					

Contents:

- 1. Learning Agile, Understanding agile values, Agile Principle, A Team Lead, Architect, and Project Manager Walk into a Bar, No Silver Bullet, Agile to the Rescue! (Right?), A Fractured Perspective, The Agile Manifesto Helps the Purpose Behind Each Practice, Understanding the Elephant, Where to Start with a New Methodology. **10hrs**
- 2. The agile principle, The 12 Principles of Agile Software, The Customer Is Always Right...Right? Delivering the Project, Communicating and Working together, Project Execution—Moving the Project Along, Constantly Improving the Project and the Team, The Agile Project: Bringing All the Principles Together. 10hrs
- **3.** The Rules of Scrum, Act I: I Can Haz Scrum? Everyone on a Scrum Team Owns the Project ,Act II: Status Updates Are for Social Networks! , The Whole Team Uses the Daily Scrum Act III: Sprinting into a Wall 119, Sprints, Planning, and Retrospectives ,Act IV: Dog Catches Car Scrum and Self-Organizing Teams, The Rules of Scrum, Act I: I Can Haz Scrum? , Everyone on a Scrum Team Owns the Project, Act II: Status Updates Are for Social Networks! , The Whole Team Uses the Daily Scrum, Act III: Sprinting into a Wall, Sprints, Planning, and Retrospectives, Act IV: Dog Catches Car. **12hrs**
- **4.** Scrum Planning and Collective Commitment, Act V: Not Quite Expecting the Unexpected ,User Stories, Velocity, and Generally Accepted Scrum Practices, Act VI: Victory Lap Scrum Values Revisited, XP and Embracing Change, Act I: Going into Overtime ,The Primary Practices of XP ,Act II: The Game Plan Changed, but We're Still Losing ,The XP Values Help the Team Change Their Mindset ,An Effective Mindset Starts with the XP Values ,Act III: The Momentum Shifts 200,Understanding the XP Principles Helps You Embrace Change. **10hrs**

5. XP, Simplicity, and Incremental Design, Act IV: Going into Overtime, Part 2: Second Overtime, Code and Design, Make Code and Design Decisions at the Last Responsible Moment, Incremental Design and the Holistic XP Practices, Act V: Final Score, Lean, Eliminating Waste, and Seeing the Whole, Lean Thinking, Act I: Just One More Thing, Creating Heroes and Magical Thinking, Eliminate Waste, Gain a Deeper Understanding of the Product, Deliver As Fast As Possible

10hrs

Text book:

1. "Learning Agile UNDERSTANDING SCRUM, XP, LEAN, AND K ANBAN", Andrew Stellman & Jennifer Greene, O'Reilly Media,1st Edition, 2014

Reference books:

- 2. "Agile Software Development, Principles, Patterns, and Practices", Robert C. Martin, Prentice Hall; 1st edition, 2002
- **3.** "Agile and Iterative Development A Manger's Guide", Craig Larman Pearson Education, First Edition, India, 2004

UG-2018-19 Scheme for III Semester

			Teachi]	Examinat	ion	
Course	Course	Correge Title	TTD		CIE	Theory	y (SEE)	Practi	cal (SEE)
Code	Category	Course Title	L-1-P (Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration
			(III S/ WCCK)		Marks	Marks	in hours	Marks	in hours
15UMAC300		Engineering							
	PC	Mathematics-	4-0-0	4	50	100	3		
		III							
15UISC300	PC	Data	3-2-0	4	50	100	3		
	10	Structures	3-2-0	7	30	100	3		
15UISC301	PC	Digital	3-0-0	3	50	100	3		
	rc	Circuits	3-0-0	3	30	100	3		
15UISC302		Discrete							
	PC	Mathematical	4-0-0	4	50	100	3		
	10	& Graphical	4-0-0	4	30	100	3		
		Structures							
15UISC303	PC	Computer	4-0-0	4	50	100	3		
	10	Organization	4-0-0	4	30	100	3		
15UISC304	PC	Digital	0-0-3	1.5	50			50	3
	10	Circuits Lab	0-0-3	1.5	30			30	3
15UISC305		Data							
	PC	Structures	0-0-3	1.5	50			50	3
		Lab							
15UISC306	PC	Unix/Linux	1-0-2	2	50			50	3
		Lab	1-0-2	<i></i>	30			30	J
Total			19-2-8	24	400	500		150	

Scheme for IV Semester

Course	Course	Course Title	Teachi	ing]	Examinat	ion	
Code	Category		L-T-P	Credits	CIE	Theory (SEE)		Praction	cal (SEE)
			(Hrs/Week)		Max.	*Max.	Duration	Max.	Duration
					Marks	Marks	in hours	Marks	In hours
15UMAC400	PC	Engineering	4-0-0	4	50	100	3		
		Mathematics -							
		IV							
15UISC400	PC	Object Oriented	4-0-0	4	50	100	3		
		Programming							
15UISC401	PC	Analysis and	3-0-2	4	50	100	3		
		Design of							
		Algorithms							
15UISC402	PC	Data	4-0-0	4	50	100	3		

		Communication							
15UISC403	PC	Microcontroller	4-0-0	4	50	100	3		
		8051							
15UISC404	PC	Finite	3-2-0	4	50	100	3		
		Automata and							
		Formal							
		Language							
15UISL405	PC	Microcontroller	0-0-3	1.5	50			50	3
		Laboratory							
15UISL406	PC	Object Oriented	0-0-3	1.5	50			50	3
		Programming							
		Laboratory							
	Total		22-2-8	27	400	600		100	

Scheme for V Semester

Course	Course	Course Title	Teachi	ing]	Examinat	ion	
Code	Category		L-T-P	Credits	CIE	Theor	ry (SEE)	Praction	cal (SEE)
			(Hrs/Week)		Max.	*Max. Duration		Max.	Duration
					Marks	Marks	in hours	Marks	in hours
15UISC500	PC	Management,	4-0-0	4	50	100	3		
		Entrepreneurship and							
		Intellectual Property							
		Rights							
15UISC501	PC	Operating Systems	4-0-0	4	50	100	3		
15UISC502	PC	Database Management	4-0-0	4	50	100	3		
		System							
15UISC503	PC	System software	4-0-0	4	50	100	3		
15UISC504	PC	Programming in Java	4-0-0	4	50	100	3		
15UISL505	PC	Database Management	0-0-2	1	50			50	3
		System Lab							
15UISL506	PC	Java Lab	0-0-2	1	50			50	3
15UISL507	PC	Mini project – I	0-0-6	4	50	100	3		
	Tot	al	20-0-10	26	400	600		100	

Scheme for VI Semester

Course	Course	Course Title	Teachi	ng		E	xaminati	on		
Code	Category		L-T-P	Credits	CIE	Theor	y (SEE)	Practic	al (SEE)	
			(Hrs/Week)		Max.	*Max.	Duration	Max.	Duration	
					Marks	Marks	in hours	Marks	In hours	
15UISC600	PC	Web Technology	4-0-0	4	50	100	3			
15UISC601	PC	File structures	3-0-2	4	50	100	3			
15UISC602	PC	Software	4-0-0	4	50	100	3			
		Engineering								
15UISC603	PC	Computer	3-0-0	3	50	100	3			
		Networks								
15UISL604	PC	Web Technology	0-0-2	1	50			50	3	
		Lab								
15UISL605	PC	Mini Project-II	0-0-6	4	50			50	3	
15UISE6XX	PE	Elective – I	4-0-0	4	50	100	3			
15UISE6XX	PE	Elective – II	4-0-0	4	50	100	3			
	Total		22-0-10	28	400	600		100		

Code	Elective – I	Code	Elective –II
15UISE620	Unix Systems Programming	15UISE623	Computer Graphics
15UISE621	Advanced Computer	15UISE624	Advanced Data Base Management
130132021	Architecture	1301312024	System
15UISE622	Advanced Data Structures	15UISE625	System simulation and Modeling

Scheme for VII Semester

			Teaching		Examination					
Course	Course	Course Title	L-T-P		CIE	Theory	y (SEE)	Praction	cal (SEE)	
Code	Category	Course True	(Hrs/Week)	Credits			Duration in hours		Duration in hours	
15UISC700	PC	User Interface Design	4-0-0	4	50	100	3			
15UISC701	PC	Big Data Analytics	4-0-0	4	50	100	3			
15UISC702	PC	Data Mining	3-0-0	3	50	100	3			
15UISL703	PC	Project- Phase I	0-0-4	4	50			50	3	
15UISL704	PC	Computer Networks Lab	0-0-2	1	50			50	3	
15UISL705	PC	Data Analytics Lab	0-0-2	1	50			50	3	
15UISE7XX	PE	Elective-V	4-0-0	4	50	100	3			
15UISE7XX	PE	Elective-VI	4-0-0	4	50	100	3			
Total			19-0-8	25	400	500		150		

Code	Elective – I	Code	Elective –II
15UISE750	Cloud Computing	15UISE760	Mobile computing
15UISE751	Object Oriented modeling & Design	15UISE761	Information Storage Management
15UISE752	Software Testing	15UISE762	Internet of Things

Scheme for VIII Semester

			Teaching		Examination						
Course	Course	Course Title	ттр		CIE	Theory (SEE)	Practica	l (SEE)		
Code	Category		(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration		
					Marks	Marks	in hours	Marks	In hours		
	PC	Machine	3-0-0	3	50	100	3				
15UISC800	FC	Learning	3-0-0	3	30	100	3				
	PC	Project-		10	50			50	3		
15UISL801	r C	Phase II	0-0-6	10	30			30	3		
15UISL802	PC	Seminar	0-0-2	2	50						
15UISL803	PC	Machine		1	50			50	3		
130131.603	PC	Learning Lab	0-0-2	1	30			30	3		
15UISE8XX	PE	Elective -	4-0-0	4	50	100	3				
IJUISLOAA	FL	VII	4-0-0	4	30	100	3				
15UISE8XX	PE	Elective –	4-0-0	4	50	100	3				
IJUISEOAA	FE	VIII	4-0-0	4	30	100	3				
Total	Total				300	300		100			

Code	Elective – I	Code	Elective –II
15UISE850	Network Security & Cryptography	15UISE860	Wireless Sensor Networks
15UISE851	Artificial Intelligence	15UISE861	Digital Image Processing
15UISE852	Project management	15UISE862	Service Oriented Architecture

SEE: Semester End

CIE: Continuous Internal Evaluation

Examination*

L: Lecture T: Tutorials P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

Dr. Jagadeesh D. Pujari HOD, ISE

Contact Hours: 42

Course Learning Objectives (CLOs): Machine Learning is the discipline of designing algorithms that allow machines to learn patterns and concepts from data without being explicitly programmed. This fundamental course will enable students to understand the concept of machine learning and problems relevant to it. Students will be able to differentiate between supervised and unsupervised learning and apply neural networks, Bayes classifier and k nearest neighbour, for problems related to machine learning.

Course Outcomes(COs):

Descr	iption	of th	e coui	rse ou	tcome	e:		M	appi	ng to I	POs(1-	-12)/P	SOs(13	3-14)	
At the					stude	nt	Sub	stanti	al	Mod	erate		Slig	ght	
	V	vill be	able t	to:			L	evel (3	3)	Lev	el (2)		Level	(1)	
CO-1	Ident	•	the	issu		and									
		_	of ma			_		1		2					
			a su	itable	learr	ning									
	techn														
CO-2	Anal	•	conc	-	learn	_									
			ance t												
		•	classi			and	1	,2					4		
	Reinf	orcen	nent le	arning	5										
CO-3	Desig	n	and	Den	nonsti	rate									
	vario		Mach	ine	learr	ning	3,13			5		6			
	algor	ithms	in a ra	inge o	of										
	real-v	vorld	applic	ations											
CO-4	Anal	yze	the	u	nderly	ing									
	mathe	ematic	al rela	ationsl	nip ac	ross	1			2		6			
	Mach	ine L	earnin	g											
			algori	thms											
CO-5	Unde	rstand	l the	nece	essity	of									
		nsion	•		reduct	ion,		1		1			12		
	-		system												
	Appl	y to th	ne give	en data	set.					T	ı		ı		
$PO \rightarrow$	PO1	PO	PO3	PO	PO5	PO	PO7	PO8	PO	PO1	PO1	PO1	PSO1	PSO1	
		2		4		6			9	0	1	2	3	4	
Mappin	2.75	2.5	3.0	1.0	2.0	1.0						1.0	3.0		
g	2.13	2.3	3.0	1.0	2.0	1.0						1.0	3.0		

Lavial							
Level							1
							1

Prerequisites:

Linear algebra, statistics and probability

Contents:

- **1) Introduction:** Basic Definitions, Types of learning, Designing a Learning system, Perspective and Issues in Machine Learning, Concept learning task, Concept learning as search, Find-S algorithm, Version space, Candidate Elimination algorithm, Inductive Bias. **08 Hrs.**
- **2) Decision Tree Learning:** Decision tree representation, Appropriate problems for decision tree learning, Basic decision tree learning algorithm, hypothesis space searching decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning. **08 Hrs.**
- **3) Artificial Neural Networks:** Introduction- Neural Network representation and appropriate problems, Back propagation algorithm. **06 Hrs.**
- 4) Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and Least –Squared Error Hypotheses, ML for predicting probabilities, MDL principle, Naive Bayes Classifier, Bayesian belief networks, EM algorithm
 08 Hrs.
- **5) Instance Based and Reinforcement Learning:** Introduction, k-nearest neighbour learning, locally weighted regression, radial basis function, Introduction to reinforcement learning **06 Hrs.**
- **6) Dimensionality Reduction and Recommendation system**: PCA, Matrix factorization, SVD Applications to machine learning, Collaborative Filtering.

06 Hrs.

Reference books:

- [1] Tom M. Mitchell, "Machine Learning", India Edition, McGraw Hill Education, 2013
- [2] EthemAlpaydin, "Introduction to Machine Learning", 2ndEdition, PHI Learning Pvt. Ltd., 2013.
- [3] Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", 2nd Edition, Springer series in statistics.

Contact Hours: 36

Course Learning Objectives (CLOs): This course will enable the students to choose appropriate datasets and make use of it in implementing any machine learning algorithms. The students can use any suitable language of their choice for algorithm implementation and problems of real world application.

Course Outcomes(COs):

Descr	iption	of th	e coui	rse ou	tcome	:		M	appi	ng to I	POs(1-	-12)/P	SOs(13	3-14)	
At the	e end o	of the	cours	e the s	studer	ıt 🗍	Substantial			Mod	erate	Slight			
	V	vill be	able t	to:			Level (3) Level (2)			el (2)	Level (1)				
CO-1	CO-1 Identify appropriate dataset for														
	t	he giv	en alg	orithn	n and			1		2,3,	5,13		12		
	desig	gn and	imple	ement	the giv	ven									
			algori	thm.											
CO-2	Desig	gn a	nd	imple	ment	a									
	suital	ole	mach	ine	learn	ing	1	.,2		3,5	5,13		12	,14	
	algor	ithm f	or the	given											
	probl	em de	finitio	n.											
$PO \rightarrow$	PO1	PO	PO3	PO4	PO5	PO	PO7	PO8	PC	PO1	PO1	PO1	PSO1	PSO1	
		2				6			9	0	1	2	3	4	
Mappin	3.0	2.5	2.0		2.0							2.0	2.0	1.0	
g	3.0	2.3	2.0		2.0							2.0	2.0	1.0	
Level															

List of programs:

- 1) Implement and demonstrate the FIND-S algorithm for a given data set
- 2) For a given set of training data examples, implement and demonstrate the Candidate-Elimination algorithm.
- 3) Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 4) Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.
- 5) Write a program to implement the naïve Bayesian classifier for a sample training data set
- 6) For a given data set implement PCA algorithm

- 7) Implement the non-parametric locally weighted regression algorithm in order to fit data points. Select appropriate data points and draw graphs.
- 8) For the given problem definitions, apply a suitable Machine learning algorithm. Choose appropriate data set

Reference books:

- [1] Tinniam V Ganesh, "Practical Machine Learning with R and Python", 2/e
- [2] AurélienGéron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems",1/e.

Contact Hours: 52 Course Learning Objectives (CLOs): The objective of the course is to present an overview of artificial intelligence (AI) principles and approaches. Develop a basic understanding of the building blocks of AI as presented in terms of intelligent agents: Search, Knowledge representation, inference, logic, and learning.

Course Outcomes(COs):

Descrip	tion	of	the	col	ırse o	utcor	ne:	Mapping to POs(1-12)/PSOs(13-14)								
1	At the stud		of the will b			ıe		Substa Level			derate vel (2)		ght (1)	Level		
CO-1			-		of	AI an	ıd	1								
	Intelli	gent	agent	S.												
CO-2	Apply	sear	ching	techi	nique	s for	ΑI	2			2					
	systen	ns														
CO-3	Desig	n th	e log	gic fo	or kr	nowle	dge									
	repres	entat	ion a	nd re	asoni	ng in	ΑI	3			3					
	based	syste	ms.													
CO-4	Forma	alize	a giv	en p	roblei	n in	the									
	langua	age/fr	amev	vork			of	3			3					
	differe	ent A	I metl	nods.												
CO-5	Analy	ze	dif	feren	t	learn	ing									
	algori	thms	in	ΑI	syst	ems	&									
	Imple	ment	aj	oplica	tions	us	ing	3			3					
	differe		_	-		nce										
	conce				J											
$PO \rightarrow$							PO7	PO8	PO9	PO10	PO11	PO12	PSO13	PSO14		
Mappin	3	2.3	2.5													
g																
Lev																

Pre-requisites:

Exposure to algorithms and programming

Contents

- Introduction: What is AI? What is AI? Foundation of AI, History of AI, state of art, Intelligent Agents, Agents and environment, AI-Problem formulation, Problem Definition -Production systems, Control strategies, Search strategies. Problem characteristics, Production system characteristics -Specialized productions system-Problem solving methods Problem graphs, matching.
 10 Hrs
- Solving problems by searching: State space search: Depth first and Breath first, Indexing and Heuristic functions Heuristic Search- Best First Search, Hill Climbing, Beam Search, Randomized Search: Simulated Annealing, Genetic Algorithms, Ant Colony optimization, Constraints satisfaction Related algorithms, Measure of performance and analysis of search algorithms.
 10 Hrs
- **3.** Representation of Knowledge: Game playing: Knowledge representation, Knowledge representation using Predicate logic, Introduction to predicate calculus, Resolution, Use of predicate calculus, Knowledge representation using other logic- Structured representation of knowledge, Mini max Algorithm, Alpha Beta Algorithm.

10 Hrs

- 4. Production based system, Frame based system. Inference; Backward chaining, Forward chaining, Propositional Logic, First Order Logic, Soundness and Completeness Rule value approach, Fuzzy reasoning Certainty factors, Bayesian Theory-Bayesian Network-Dempster Shafer theory.
 08 Hrs
- 5. Planning and Constraint Satisfaction: Domains, Forward and Backward Search, Goal Stack Planning, Plan Space Planning, Graph plan, Constraint Propagation, Basic plan generation systems Strips -Advanced plan generation systems K strips -Strategic explanations -Why, Why not and how explanations. Learning Machine learning, adaptive Learning.
 08 Hrs
- 6. Natural Language Processing: Language Models, Text Classification, Information Retrieval Information Extraction Natural Language for Communication, Machine Translation, Speech Recognition, Perception, Image Formation, Early Image-Processing Operations, Object Recognition by Appearance Reconstructing the 3D World, Object Recognition from Structural Information.

06 Hrs

Reference Books:

- 1) Deepak Khemani, A First Course in Artificial Intelligence, McGraw Hill Education (India), 2013.
- 2) Elaine Rich, Kevin Knight, Shiva Shankar B Nair, Artificial Intelligence, Tata McGraw Hill 3rd Edition, 2013.
- 3) Stefan Edelkamp and Stefan Schroedl. Heuristic Search: Theory and

- Applications, Morgan Kaufmann, 2011.
- 4) Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall, 2009.
- 1) Pamela McCorduck, Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence, A K Peters/CRC Press; 2nd Edition, 2004.

UG-2019-20 Scheme for III Semester

			Teaching		Exam	ination	ı		
Course	Course	Course Title	L-T-P		CIE	Theory	y (SEE)	Praction	cal (SEE)
Code	Category		(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration
			(III 5/ WCCK)		Marks	Marks	in hours	Marks	in hours
18UMAC300	BS	Engineering Mathematics-III	3 - 0 - 0	3	50	100	3	-	-
18UISC300	PC	Data Structures	3 - 2 - 0	4	50	100	3	-	-
18UISC301	PC	Logic Design	3 - 0 - 0	3	50	100	3	-	-
		Discrete							
18UISC302	PC	Mathematics &	4 - 0 - 0	4	50	100	3	-	-
		Graph Theory							
18UISC303	PC	Unix and Shell Programming	3 - 0 - 2	4	50	100	3	1	-
		Computer							
18UISC304	PC	Organization and	3 - 0 - 0	3	50	100	3	-	-
		Architecture							
18UISL305	PC	Data Structures	0 - 0 - 3	1.5	50	_		50	3
1801312303	10	Laboratory	0-0-3	1.5	30	_	-	30	3
18UISL306	PC	Logic Design	0 - 0 -3	1.5	50	_	-	50	3
1001512500	10	Laboratory	0 0 3	1.5	50			50	3
Total			19 - 2 - 8	24	400	600		100	

Scheme for IV Semester

			Teachi	ng		F	Examinati	on	
Course	Course	Course Title	L-T-P	G 11.	CIE		y (SEE)		cal (SEE)
Code	Category		(Hrs/Week)	Credits					Duration
			,		Marks	Marks	in hours	Marks	In hours
18UMAC400	BS	Engineering	3 - 0 - 0	3	50	100	3	-	-
		Mathematics - IV							
18UISC400	PC	Object Oriented	4 - 0 - 0	4	50	100	3	-	-
		Programming							
18UISC401	PC	Microcontroller	4 - 0 - 0	4	50	100	3	-	-
18UISC402	PC	Finite Automata	3 - 2 - 0	4	50	100	3	-	-
		and Formal							
		Language							
18UISC403	PC	Design and	3 - 0 - 0	3	50	100	3	-	-
		Analysis of							
		Algorithms							
18UISC404	PC	Operating System	3 - 0 - 0	3	50	100	3	-	-
18UISL405	PC	Object Oriented	0 - 0 - 3	1.5	50	-	-	50	3
		Programming							
		Laboratory							
18UISL406	PC	Microcontroller	0 - 0 -3	1.5	50	-	-	50	3

		Laboratory						
18UISL407	PC	Introductory	0 - 0-2	1	50	-	 -	
		Project						
Total			20 - 2 -8	25	450	600	100	

Scheme for V Semester

			Teaching		Examination					
Course	Course	Course Title	L-T-P		CIE	Theory	y (SEE)	Praction	cal (SEE)	
Code	Category		(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration	
			(1115/WEEK)		Marks	Marks	in hours	Marks	in hours	
		Management,								
15UISC500	PC	Entrepreneurship and	4-0-0	4	50	100	3			
130130300	10	Intellectual Property	4-0-0	4	30					
		Rights								
15UISC501	PC	Operating Systems	4-0-0	4	50	100	3			
15UISC502	PC	Database Management	4-0-0	4	50	100	3			
130130302		System	4-0-0	-	30	100	3			
15UISC503	PC	System software	4-0-0	4	50	100	3			
15UISC504	PC	Programming in Java	4-0-0	4	50	100	3			
15UISL505	PC	Database Management	0-0-2	1	50			50	3	
130131303	rc	System Lab	0-0-2	1	30			30	3	
15UISL506	PC	Java Lab	0-0-2	1	50			50	3	
15UISL507	PC	Mini project – I	0-0-6	4	50	100	3			
Total			20-0-10	26	400	600		100		

Scheme for VI Semester

		~ 1	Teaching		Exami	nation			
Course Code	Course Category	Course Title	L-T-P (Hrs/Week)	Credits	CIE	Theory *Max. Marks	(SEE) Duration in hours		ol (SEE) Duration In hours
15UISC600	PC	Web Technology	4-0-0	4	50	100	3		
15UISC601	PC	File structures	3-0-2	4	50	100	3		
15UISC602	PC	Software Engineering	4-0-0	4	50	100	3		
15UISC603	PC	Computer Networks	3-0-0	3	50	100	3		
15UISL604	PC	Web Technology Lab	0-0-2	1	50			50	3
15UISL605	PC	Mini Project- II	0-0-6	4	50			50	3
15UISE6XX	PE	Elective – I	4-0-0	4	50	100	3		
15UISE6XX	PE	Elective – II	4-0-0	4	50	100	3		
Total			22-0-10	28	400	600		100	

Code	Elective – I	Code	Elective –II
15UISE620	Unix Systems Programming	15UISE623	Computer Graphics
15UISE621	Advanced Computer Architecture	15UISE624	Advanced Data Base Management System
15UISE622	Advanced Data Structures	15UISE625	System simulation and Modeling

Scheme for VII Semester

			Teaching		Exam	ination			
Course	Course		L-T-P		CIE	Theory	(SEE)	Practical (SEE)	
Code	Category		L-1-F (Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration
			(IIIS/ WEEK)		Marks	Marks	in hours	Marks	in hours
15UISC700	PC	User Interface Design	4-0-0	4	50	100	3		
15UISC701	PC	Big Data Analytics	4-0-0	4	50	100	3		
15UISC702	PC	Data Mining	3-0-0	3	50	100	3		
15UISL703	PC	Project- Phase I	0-0-6	4	50			50	3
15UISL704	PC	Computer Networks Lab	0-0-2	1	50			50	3
15UISL705	PC	Data Analytics Lab	0-0-2	1	50			50	3
15UISE7XX	PE	Elective-V	4-0-0	4	50	100	3		
15UISE7XX	PE	Elective-VI	4-0-0	4	50	100	3		
Total	19-0-10	25	400	500		150			

Code	Elective – I	Code	Elective –II
15UISE750	Cloud Computing	15UISE760	Mobile computing
15UISE751	Object Oriented modeling & Design	15UISE761	Information Storage Management
15UISE752	Software Testing	15UISE762	Internet of Things

Scheme for VIII Semester

			Teaching		Examination					
Course	Course		L-T-P	Credits	CIE	Theory (S	SEE)	Practical (SEE)		
Code	Category		L-1-F (Hrs/Week)		Max.	*Max.	Duration	Max.	Duration	
					Marks	Marks	in hours	Marks	In hours	
15UISC800	PC	Machine Learning	3-0-0	3	50	100	3			
15UISL801	PC	Project- Phase II	0-0-6	10	50			50	3	
15UISL802	PC	Seminar	0-0-2	2	50					
15UISL803	PC	Machine Learning		1	50			50	3	
	10	Lab	0-0-2	1	30			30	3	
15UISE8XX	PE	Elective – VII	4-0-0	4	50	100	3			
15UISE8XX	PE	E Elective – VIII		4	50	100	3			
Total		11-0-10	24	300	300		100			

Code	Elective – I	Code	Elective –II	
15UISE850	Network Security &	151 HCE960	Wireless Sensor Networks	
	Cryptography	1301313000	Wheless Schsol Networks	
15UISE851	Artificial Intelligence	15UISE861	Digital Image Processing	
15UISE852	Project management	15UISE862	Service Oriented Architecture	

Dr. Jagadeesh D. Pujari HOD, ISE

Contact Hours: 52

Course Learning Objectives (CLOs): The objective of the course is to provide a sound technical exposure to the concepts, commands, and procedures in a multiuser, multitasking operating system. To expertise the students with sound knowledge and superior competence in Shell programming in an extremely effective way. They would have a clear appreciation of the role of an O.S. in a computing environment.

Course Outcomes(COs):

	scriptio							N	Iappii	ng to PC)s(1-12)	/PSOs(13-14)	
At the end	d of the		se the s to:	studen	t Will t	e able	Subst	antial 3	Level	Modera (ate Leve (2)	el S	light Lev	el (1)
CO-1	Descri of UN disting Systen	IX Ope	erating	System	n and								1	
CO-2	Illustrate working with vi editor, creating & editing text file with vi editor using standard vi editor commands.										2			
CO-3								2						
CO-4	O-4 Demonstrate the capabilities to write and execute shell script.							2					1	
PO →						PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO13	PSO14
Mapping Level	1.0	2.75	20											

Contents:

1) Introduction, Brief history. UNIX Components/Architecture. Features of Unix. The UNIX Environment and UNIX Structure, Posix and Single Unix specification. The login prompt. General features of UNIX commands/ command structure. Command arguments and options. Understanding of some basic commands such as echo, printf, ls, who, date, passwd, cal, combining commands. Meaning of Internal and external commands. The type command: knowing the type of a command and locating it. The man command knowing more about UNIX commands and using UNIX online manual pages. The man with keyword option and whatis. The more command and using it with other commands. Knowing the user terminal, displaying its characteristics and setting characteristics. Managing the non-uniform behaviour of terminals and

- keyboards. The root login. Becoming the super user: su command. The /etc/passwd and /etc/shadow files. Commands to add modify and delete users. 7L+3P=10 Hrs.
- **2)** Unix files. Naming files. Basic file types/categories. Organization of files. Hidden files. Standard directories. Parent child relationship. The home directory and the HOME variable. Reaching required files- the PATH variable, manipulating the PATH, Relative and absolute pathnames. Directory commands pwd, cd, mkdir, rmdir commands. The dot (.) and double dots (...) notations to represent present and parent directories and their usage in relative path names. File related commands cat, mv, rm, cp, wc and od commands. File attributes and permissions and knowing them. The ls command with options. Changing file permissions: the relative and absolute permissions changing methods. Recursively changing file permissions. Directory permissions. **8L+2P=10 Hrs.**
- **3)** The VI editor. Basics. The .exrc file. Different ways of invoking and quitting vi. Different modes of VI. Input mode commands. Command mode commands. The ex mode commands. Illustrative examples Navigation commands. Repeat
 - command. Pattern searching. The search and replace command. The set, map and abbr commands. Simple examples using these commands. The shells interpretive cycle. Wild cards and file name generation. Removing the special meanings of wild cards. Three standard files and redirection. Connecting commands: Pipe. Splitting the output: tee. Command substitution. Basic and Extended regular expressions. The grep, egrep. Typical examples involving different regular expressions.

 8L+2P=10 Hrs.
- **4) Shell programming.** Ordinary and environment variables. The .profile. Read and read only commands. Command line arguments. exit and exit status of a command. Logical operators for conditional execution. The test command and its shortcut. The if, while, for and case control statements. The set and shift commands and handling positional parameters. The here (<<) document and trap command. Simple shell program examples. File inodes and the inode structure. File links hard and soft links. Filters. Head and tail commands. Cut and paste commands. The sort command and its usage with different options. The umask and default file permissions. Two special files /dev/null and /dev/tty.

8L+2P=10 Hrs.

5) The Process: Meaning of a process. Mechanism of process creation. Parent and child process. The ps command with its options. Executing a command at a specified point of time: at command. Executing a command periodically: cron command and the crontab file. Signals. The nice and nohup commands. Background processes. The bg and fg command. The kill command. The find command with illustrative example.

Structure of a PERL script. Running a PERL script. Variables and operators. String handling

functions. Default variables - \$_ and \$. - representing the current line and current line number. The range operator. Chop () and chomp () functions. Lists and arrays. The @- variable. The splice operator, push (), pop (), split () and join (). File handles and handling file - using open(), close() and die () functions. Associative arrays - keys and value functions. Overview of decision making loop control structures - the foreach. Regular expressions - simple and multiple search patterns. The match and substitute operators. Defining and using subroutines. **8L+4P=12 Hrs.**

Reference books:

[1] Sumitabha Das., Unix Concepts and Applications., 4th Edition., Tata McGraw Hill

- [2] Behrouz A. Forouzan, Richard F. Gilberg: UNIX and Shell Programming- Cengage Learning India Edition. 2009.
- [3] M.G. Venkateshmurthy: "UNIX & Shell Programming", Pearson Education, 2005.
- [4] Richard Blum, Christine Bresnahan: Linux Command Line and Shell Scripting Bible, 2ndEdition, Wiley, 2014.

Course Learning Objectives (CLOs): Student should identify the concepts, principles and services of operating system, all fundamentals of operating system abstractions and demonstrate them, to explain protection and security requirements of operating systems analyze basic resource management techniques in job and process scheduling compare different memory management techniques and apply concurrency and synchronization techniques to write concurrent programs.

Course Outcomes(COs):

Descript	ion of the course outcome: At the end of the course	Mapping to POs(1-12)/PSOs(13-14)					
the student	will be able to:		Moderate Level	O			
		Level (3)	(2)	Level (1)			
CO-1	Describe Operating systems and their functions.	1					
CO-2	Analyze Process, IPC, Scheduling, synchronization,	2					
	storage						
	management						
CO-3	Illustrate various operating system algorithms and Apply		2	12			
	various techniques to solve real time problems.						

PO →	PC 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO13	PSO14
Mappin Level	3.0	2.5										1.0		

Prerequisites:

- 1. Computer organization,
- 2. The different parts of computer system
- 3. High level languages such as C.

Contents:

- Introduction to operating systems & their classification: What is an operating system, Mainframe systems, Desktop systems, Multiprocessor system, Distributed system, Clustered system, Real time system, Handheld system, Feature migration, Computing environments, Operating system structures: System components, OS Services, System calls, System programs, System structure, Virtual machines.
- **2.** Process, Inter process Communication, Threads & CPU Scheduling: Process concept, Process scheduling, Operation on processes, Cooperating processes, Inter process communication. Threads Overview, Multithreading models, Threading issues, Pthreads, Java threads. CPU scheduling Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple

- **3. Process Synchronization and handling Deadlocks:** The Critical section problem, Synchronization hardware, Semaphores, Classical problems of synchronization, Critical regions, monitors. Deadlock System model, Deadlock characterization, Methods for handling deadlocks Deadlock prevention, deadlock avoidance, Deadlock detection and recovery from deadlock. **10 Hrs.**
- **4. Storage Management: Main** memory management Background, Swapping, Contiguous allocation, Paging, Segmentation, Segmentation with paging. Virtual memory Background, Demand paging, Process creation, Page replacement algorithms, Allocation of frames, Thrashing. File System interface File concept, Access methods, Directory structure, Disk scheduling methods, Disk management, Swap space management. **10 Hrs.**
- 5. Protection and Security: Goals of protection, Domain of protection, Access matrix, implementation of access matrix, Revocation of access rights, The security problem, Authentication, Program threats, System threats, Securing systems and facilities, Intrusion detection.
 5 Hrs.

Reference books:

- [1] Abraham silberschatz, Peter Baer Galvin, Greg Gagne, "Operating System Concepts", 9/e, Jhon wiley& Sons, 2012.
- [2] Milan Milankovic, "Operating system concepts and design"; 2/e, Mcgrawhill 2008.

Course Learning Objectives (CLOs):

Introductory project is introduced with an objective of understanding and identifying the community expectation in terms of possible Engineering solutions by applying the fundamental knowledge of basic sciences and basic engineering courses

Course Outcomes(COs):

	Descrip	otion of outcor		ırse		Mapping to POs(1-12)/PSOs(13-14)								
At the er	At the end of the course the student will be able to:			vill be	Substantial Level (3)	Moderate Le	evel	Slig	tht Lo	evel				
CO-1	CO-1 Perform literature review for a given topic				1,2									
CO-2	Ident	• •	olem fro review	m litera	ature	1,2								
CO-3	Establish objectives and methodology for the problem defined		1,2											
CO-4	Analyz		isting safied pro		for the	2,3	5,13,14			6,7				
CO-5	Prepa prese		a finding	report s using		10				11				
PO →	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO13	PSO14
Mapping Level	3.0	3.0	3.0		2.0	1.0	1.0			3.0	1.0		2.0	2.0

Prerequisites:

1. Fundamental knowledge of basic sciences and basic engineering courses.

Contents:

The project shall be engineering oriented in terms of problem definition, related literature survey and existing solutions. The team consisting of 10-12 students shall be asked to identify the problems related to community and try to propose a solution. The faculty members handling the courses for that semester shall guide the students. A committee consisting of minimum 3 faculty members shall evaluate at the end for CIE.

UG-2020-21 Scheme for III Semester

Course	Course	Course Title	Teachi	ng]	Examinat	ion	
Code	Category		L-T-P	Credits	CIE	Theor	ry (SEE)	Praction	cal (SEE)
			(Hrs/Week)		Max.	*Max.	Duration	Max.	Duration
					Marks	Marks	in hours	Marks	in hours
18UMAC300	BS	Engineering	3 - 0 - 0	3	50	100	3	-	-
		Mathematics-							
		III							
18UISC300	PC	Data	3 - 2 - 0	4	50	100	3	-	-
		Structures							
18UISC301	PC	Logic Design	3 - 0 - 0	3	50	100	3	-	-
18UISC302	PC	Discrete	4 - 0 - 0	4	50	100	3	-	-
		Mathematics							
		& Graph							
		Theory							
18UISC303	PC	Unix and	3 - 0 - 2	4	50	100	3	-	-
		Shell							
		Programming							
18UISC304	PC	Computer	3 - 0 - 0	3	50	100	3	-	-
		Organization							
		and							
		Architecture							
18UISL305	PC	Data	0 - 0 - 3	1.5	50	-	-	50	3
		Structures							
		Laboratory							
18UISL306	PC	Logic Design	0 - 0 -3	1.5	50	-	-	50	3
		Laboratory							
	Total		19 - 2 - 8	24	400	600		100	

CIE: Continuous Internal Evaluation

SEE: Semester End Examination*

L: Lecture T: Tutorials P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks

BS- Basic Science, PC- Program Core

Scheme for IV Semester

			Teachi	ng]	Examinat	ion	
Course	Course	Course Title	L-T-P		CIE	Theor	y (SEE)	Praction	cal (SEE)
Code	Category	Course Title	(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration
			(IIIS/ WEEK)		Marks	Marks	in hours	Marks	In hours
		Engineering							-
18UMAC400	BS	Mathematics -	3 - 0 - 0	3	50	100	3	-	
		IV							
		Object							-
18UISC400	PC	Oriented	4 - 0 - 0	4	50	100	3	-	
		Programming							
18UISC401	PC	Microcontroller	4 - 0 - 0	4	50	100	3	-	-
		Finite							-
18UISC402	PC	Automata and	3 - 2 - 0	4	50	100	3		
16013C402	10	Formal	3 - 2 - 0	4	30	100	3	-	
		Language							
		Design and							-
18UISC403	PC	Analysis of	3 - 0 - 0	3	50	100	3	-	
		Algorithms							
18UISC404	PC	Operating	3 - 0 - 0	3	50	100	3		-
180150404	10	System	3-0-0	3	30	100	3	_	
		Object							3
18UISL405	PC	Oriented	0 - 0 - 3	1.5	50	_	_	50	
1801SL403	10	Programming	0-0-3	1.3	30	-	-	30	
		Laboratory							
18UISL406	PC	Microcontroller	0 - 0 -3	1.5	50	_	_	50	3
10015L400	10	Laboratory	0 - 0 -3	1.5	50	-	-	30	
18UISL407	PC	Introductory	0 - 0- 2	1	50	1	_	_	-
100101407	10	Project	0 0 2	1	50				
	Total		20 - 2 -8	25	450	600		100	

Scheme for V Semester

			Teaching		Examin	ation			
Course	Course	Course Title	L-T-P		CIE	Theory	(SEE)	Practica	al (SEE)
Code	Category	Course Title	(Hrs./Week) Credit		Max. Marks	*Max. Marks	Duration in Hrs.	Max. Marks	Duration in Hrs.
18UHUC500	HU	Management, Entrepreneurship and IPR	4 - 0 - 0	4	50	100	3	-	-
18UISC500	PC	Software Engineering	4 - 0 - 0	4	50	100	3	-	-
18UISC501	PC	Java and Web Technology	4 - 0 - 0	4	50	100	3	-	-
18UISC502	PC	Database Management System	3 - 0 - 0	3	50	100	3	-	-
18UISC503	PC	Computer Networks	3 - 0 - 0	3	50	100	3		
18UISE5XX	PE	Program Elective-1	3 - 0 - 0	3	50	100	3		
18UISL504	PC	Database Management System Lab	0 - 0 - 3	1.5	50			50	3
18UISL505	PC	Java Lab	0 - 0 - 3	1.5	50			50	3
18UISL506	PC	Minor Project-1	0 - 0 - 2	1	50				
18UHUL507	HU	Soft skills/Aptitude	0 - 0 - 2	1	50				
Total	Total			26	500	600		100	

CIE: Continuous Internal Evaluation SEE: Semester End Examination* L: Lecture

T: Tutorials **P**: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks

PC- Program Core HU- Humanities, PC- Program Core

Minor project -1 is undertaken to focus on the domain related problem definitions, building prototypes which can lead to take up the project in the higher semester(s). The work based on the core courses studied shall be used to formulate the problem. The team consisting of 10-12 students shall be asked to identify the problems related to community and try to propose the

solution. The faculty members handling the courses for that semester shall guide the students. A committee consisting of minimum 3 faculty members shall evaluate at the end for CIE. There is no SEE for Minor project-1.

Soft skills/Aptitude: This is included with an objective of improving the communication skills, proficiency in English language and aptitude ability of the student. This is a credit course and aimed to enhance the employability. Both the internal and external resource persons shall be engaged in imparting the related knowledge and shall have only CIE as the evaluation component. There shall be one test conducted at the end for 25 marks in Aptitude testing and there shall be one presentation by the student for 25 marks or any other suitable testing components. The arrangement for CIE evaluation is to be done by the department and maintain the relevant documents.

Management, Entrepreneurship and IPR course shall be taught in the V semester only. However, the departments can take flexibility of deciding the contents of the course as per the department specific requirements. The credit for this course is 4 and common to all departments

Elective

Code	Elective – 1					
18UISE511	System software					
18UISE512	Advanced Data Structures					
18UISE513	Real Time Operating Systems and					
	Embedded Systems					

Scheme for VI Semester

Course		Course Title	Teachi	ng	Examination				
Code	Course		L-T-P	Credits	CIE	Theor	y (SEE)	Practical (SE	
	Category		(Hrs./Week)		Max.	*Max.	Duration	Max.	Duration
					Marks	Marks	in Hrs.	Marks	in Hrs.
18UISC600	PC	Artificial	3-0-2	4	50	100	3	-	-
		Intelligence							
		and Machine							
		Learning							
18UISC601	PC	Internet of	4-0-0	4	50	100	3	-	_
		Things							

18UISE6XX	PE	Program	3-0-0	3	50	100	3	-	-
		Elective-2							
18UISE6XX	PE	Program	3-0-0	3	50	100	3	-	-
		Elective-							
		3							
18UISO6XX	OE	Open Elective	3-0-0	3	50	100	3		
18UISL602	PC	Computer	0-0-3	1.5	50			50	3
		Networks Lab							
18UISL603	PC	Web	0-0-3	1.5	50			50	3
		Technology							
		Lab							
18UISL604	PC	Minor	0-0-4	2	50			50	3
		Project-2							
18UHUL605	HU	Soft	0-0-2	1	50				
		skills/Aptitude							
Total			16 - 0 -14	23	450	500		150	

CIE: Continuous Internal Evaluation

SEE: Semester End Examination* L: Lecture

T: Tutorials **P**: Practical

PC- Program Core, PE-Program Elective, OE- Open Elective and HU- Humanities.

Minor project-2 is to be taken up having had an exposure to the project work in the previous semesters. The students are expected to locate the state-of-the-art technology in his/her domain of interest by an extensive literature survey and select a topic from an emerging area relevant to their branch/interdisciplinary and define the problem for the project work. The problem could be defined to develop prototypes for industrial needs. A team consisting of not more than 4 students shall be guided by a faculty member. This project work is to supplement and prepare the students to take up major project work at higher semesters. A committee consisting of minimum 3 faculty members shall evaluate at the end for CIE with suitable rubrics. The weightage of marks shall be 50% for the committee and 50% for the guide. There is a SEE (viva voce) examination which shall be examined by two internal examiners appointed by COE based on the suggestions by the respective HoD.

Soft skills/Aptitude: This is included with an objective of improving the communication skills, proficiency in English language and aptitude ability of the student. This is a credit course and aimed to enhance the employability. Both the internal and external resource persons shall be engaged in imparting the related knowledge and shall have only CIE as the evaluation component. There shall be one test conducted at the end for 25 marks in Aptitude testing and there shall be one presentation by the student for 25 marks or any other suitable testing

^{*}SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

components. The arrangement for CIE evaluation is to be done by the department and maintain the relevant documents.

Elective

Code	Elective – 2	Code	Elective – 3	Code	Open Elective
			Object Oriented		Management
18UISE611	ADBMS	18UISE621	Modeling and	18UISO631	Information
TOCISLOTT			Design		Systems
	User Interface				Cyber Law and
18UISE612	Design	18UISE622	Data mining	18UISO632	Ethics
	Design				
	Computer		Unix Systems		Agile
18UISE613	graphics using	18UISE623	Programming	18UISO633	Methodologies
1001512015	Open GL Programming			wiedlodologies	

Scheme for VII Semester

			Teaching		Exam	inatior	ı		
Course	Course	Course	L-T-P	G 11.		•	` ` `		cal (SEE)
Code	Category	Title	(Hrs/Week)	Credits			Duration in hours		Duration in hours
15UISC700	PC	User Interface Design	4-0-0	4	50	100	3	-	-
15UISC701	PC	Big Data Analytics	4-0-0	4	50	100	3	-	-
15UISC702	PC	Data Mining	3-0-0	3	50	100	3	-	-
15UISL703	PC	Project- Phase I	0-0-6	4	50	-	-	50	3
15UISL704	PC	Computer Network Lab	0-0-2	1	50	-	-	50	3
15UISL705	PC	Data Analytics Lab	0-0-2	1	50	-	-	50	3
15UISE7XX	PE	Elective- V	4-0-0	4	50	100	3	-	-
15UISE7XX	PE	Elective- VI	4-0-0	4	50	100	3	-	-
Total			19-0-10	25	400	500		150	

Code	Elective – V	Code	Elective –VI
15UISE750	Cloud Computing	outing 15UISE760 Mobile computi	
15UISE751	Object Oriented modeling & Design	15UISE761	Information Storage Management
15UISE752	Software Testing	15UISE762	Internet of Things

CIE: Continuous Internal Evaluation

SEE: Semester End Examination*

L: Lecture T: Tutorials P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

Scheme for VIII Semester

			Teachi	ing]	Examinat	ion	
Course	Course	Course	L-T-P		CIE	Theor	y (SEE)	Praction	cal (SEE)
Code	Category	Title	(Hrs/Week)						Duration
			,		Marks	Marks	in hours	Marks	In hours
	PC	Machine	3-0-0	3	50	100	3		
15UISC800	10	Learning	3-0-0	3	30	100	3	_	_
	PC	Project-		10	50			50	3
15UISL801	PC	Phase II	0-0-6	10	30	_	-	30	3
15UISL802	PC	Seminar	0-0-2	2	50	-	-	-	-
		Machine							
15UISL803	PC	Learning		1	50	-	-	50	3
		Lab	0-0-2						
15111CE0VV	DE	Elective	4.0.0	4	50	100	3		
15UISE8XX	PE	- VII	4-0-0	4	30	100	3	-	-
15UISE8XX	PE	Elective	4-0-0	4	50	100	3		
ISUISE8XX	PE	– VIII	4-0-0	4	30	100	3	-	_
	Total		11-0-10	24	300	300		100	

Code	Elective – VII	Code	Elective –VIII
15UISE850	Network Security &	15UISE860	Wireless Sensor
13013E630	Cryptography	13013E000	Networks
15UISE851	Artificial Intelligence	15UISE861	Digital Image Processing
15UISE852	Droingt management	15UISE862	Service Oriented
13013E632	Project management	13013E602	Architecture

CIE: Continuous Internal Evaluation

SEE: Semester End Examination*

L: Lecture T: Tutorials P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

Dr. Jagadeesh D. Pujari HOD, ISE

Course Learning Objectives (CLOs):

Student should understand the need for a process of software development complexity of system development, types of systems and quality requirements, analysis of any problem domain and formulation of requirements and assessment of quality, contemporary modeling, designing, development and validation techniques, fundamental aspects of software testing techniques.

Course Outcomes (COs):

Docorin	tion of the Course Outcome:	Mapping to POs(1-12)/PSOs(1:14)								
_	nd of the course the student will be able to:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)						
CO-1	Illustrate the need for Software Engineering and software process.	1	-	12						
CO-2	Analyze the system to be automated for identifying the software requirements.	-	2	-						
CO-3	Design High-level and Low-level design of an application from the identified software requirements.	10	3	-						
CO-4	Apply the methods of test generation from requirements and structural testing.	-	4	-						
CO-5	Adapt software testing techniques.	-	13	10						

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	3.0	2.0	2.0	2.0	-	-	-	-	-	2.0	-	1.0	2.0	-

Pre-requisites: 1.Basics of Computer Programming

Contents:

Unit-I

Overview FAQ's about software engineering, Professional and ethical responsibility. Socio-Technical systems: Emergent system properties; Systems engineering; Organizations, people and computer systems; Legacy systems. Critical Systems: A simple safety critical system; System dependability; Availability and reliability. **Software Processes:** Models, Process iteration, Process activities; The Rational Unified Process; Computer Aided Software Engineering. **10 Hrs.**

Unit-II

Software Requirements: Functional and Non-functional requirements; User requirements; System requirements; Interface specification; The software requirements document. **Requirements Engineering Processes**: Feasibility studies; Requirements elicitation and analysis; Requirements validation; Requirements management. **System Models**: System models: Context models, Behavioural models, Data models, Object models, structured methods.

Unit-III

Software Design: Architectural Design: Architectural design decisions; System organization; Modular decomposition styles; Control styles. **Object Oriented design**: Objects and Object Classes; An Object-Oriented design process; Design evolution. UI Design Issues. Development: Rapid Software Development: Agile methods; Extreme programming; Rapid application development. Software Evolution: Program evolution dynamics; Software maintenance; Evolution processes; Legacy system evolution.

Unit-IV

Basics of Software Testing: Human Errors and Testing; Software Quality; Requirements, Behavior and Correctness. **Software testing:** System testing; Component testing; Test case design; Test automation. **Testing Techniques:** Test Generation from Predicates, Statement testing, Branch Testing, Condition Testing, Path Testing, Procedural Call Testing, Data Flow Testing. **11 Hrs.**

Unit-V

Structural (White Box) Testing: Definition-Use pairs, Definition-Use associations; Data flow testing criteria; Data flow coverage with complex structures; The infeasibility problem. **Fault Based Testing:** Overview, Assumptions in fault based testing, Mutation analysis, Fault-based adequacy criteria, Variations on mutation analysis.**Black Box Testing:** Introduction, Functional testing, Integration testing, System testing, Acceptance testing, Adhoc testing, Regression testing, Smoke testing; The Test-Selection Problem; Equivalence Partitioning; Boundary Value Analysis; Category-Partition Method, Cause-Effect Graphing.

Reference Books:

- 1) Ian Somerville, "Software Engineering", 8/e, Pearson Education, 2012.
- 2) Rogers S Pressman, "Software Engineering: A Practitioners Approach", 7/e, MCGrawHill, 2007.
- 3) Shari Lawrence Pfleeger, Joanne m Atlec, "Software Engineering theory and Practice", 3/e, Pearson Education, 2006.
- 4) Waman S Jawadekar, "Software Engineering Principles and Practice", Tata McGraw Hill, 2004.
- 5) Foundations of Software Testing Aditya P Mathur, Pearson Education, 2008
- 6) Software Testing and Analysis Process Principles and Techniques Mauro Pezze, Michal Young, Wiley India, 2008

(4-0-0)4

Contact Hours: 52

Course Learning Objectives (CLOs):

Students should be able to write object-oriented code for a given problem applying the Java language features. Students should understand the World Wide Web, HTML5 tags, Java Scripts, Servlets, PHP and should be able to develop web applications.

Course Outcomes (COs):

_	otion of the Course Outcome:	Mapping to PO	Os (1-12)/ PSO	os (13-14)
At the e	and of the course the student will be able	Substantial	Moderate	Slight
ιο.		Level (3)	Level (2)	Level (1)
CO-1	Implement the concepts of object-			
	oriented programming using Java	1	2	3,12,13,14
	language and Illustrate the concept of	1	2	3,12,13,14
	Interface and Packages.			
CO-2	Apply multi-threaded programming			
	and exception handling in Java	13	1, 2, 3	12,14
	programs.			
CO-3	Use JDBC to build the java application			
	and Illustrate the structure of the	1	2, 3,13	5,12,14
	World Wide Web.			
CO-4	Develop web database applications	2,13	1,3	5,12,14
	using PHP and MySQL database.	2,13	1,3	3,12,14
CO-5	Develop simple web applications using	1	2, 3, 5	12,13,14
	Applets, HTML5 and Servlets.	1	2, 3, 3	12,13,14

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	2.6	2.2	1.8	-	1.33	-	-	-	1	ı	-	1.0	2.6	1.0

Pre-requisites: 1. Basic programming skills

Contents:

Unit-I

Introduction to Java: Java and Java applications; Java Development Kit (JDK); Java is interpreted, Byte Code, JVM; Object-oriented programming; Simple Java programs. Data types, literals, assigning values; Operators and Expressions, Typecasting; Arrays, Strings; Control Statements: Selection statements, iteration statements, Jump Statements.

Classes: Class Fundamentals, Declaring objects, Object Reference Variables, Constructors, this keyword, Garbage collection, finalize() method.

Inheritance: Inheritance basics, super keyword, Multi-level hierarchy, Method overriding, Dynamic Method Dispatch.

Packages and Interfaces: Packages, Access Protection, Importing packages, Interfaces. 11 Hrs.

Unit-II

Exception handling in Java: Exception-handling fundamentals, Exception types, Uncaught Exceptions, Using try and catch, Multiple catch clauses, Nested try statements; throw, throws and finally clauses, Java's built-in exceptions, Creating Own Exception Subclasses.

Multi-threaded Programming: The Java Thread Lifecycle, Creating a Thread, Extending Thread, Implementing Runnable, Thread Priorities, Synchronization.

10 Hrs.

Unit-III

JDBC: Introduction, JDBC driver types, JDBC Process, Statement Objects, ResultSet, Reading the ResultSet

Web and HTML: Introduction to World Wide Web, HTML5, Cascading StyleSheet, Validation using JavaScript

10 Hrs.

Unit-IV

PHP: Introduction, Applications of PHP, Embedding PHP into HTML, php tag, Language syntax, Variables, Data types, Operators, Loops, Arrays, Built-in functions, Form handling with PHP **Database access with PHP and MySQL:** Connecting to MySQL, Selecting a database with built-in functions in PHP, Executing an SQL query, Displaying the result with mysql_fetch_row and mysql_fetch_array functions

09 Hrs.

Unit-V

Applets: Types of applets, Applet basics, The Applet class, Applet architecture, An applet skeleton, Simple Applet Display Methods, Outputting to the console, Repainting, A simple banner applet, Status Window, HTML Applet tag, Passing parameters to applets, getDocumentBase() and getCodeBase(), AudioClip Interface

Servlets: Background, The Life Cycle of a Servlet, Using tomcat for servlet development, A simple servlet – creating and compiling the servlet source code, Reading servlet parameters, The Cookie class, Handling HTTP Requests and Responses, Using Cookies, Session Tracking

12 Hrs.

Reference Books:

- 1) Herbert Schildt, "Java The Complete Reference", 8/e, Tata McGraw-Hill Education
- 2) E. Balagurusamy, "Programming with Java A Primer", 5/e, McGraw Hill Education, 2014
- 3) Jim Keogh, "J2EE The Complete Reference", McGraw Hill Education, 2007
- 4) Robert W. Sebesta, "Programming the World Wide Web", 8/e, Pearson Education

Course Learning Objectives (CLOs):

The course is designed to expose the students to build an understanding of the fundamental concepts of computer networking. The course focuses on to Familiarize the student with the basic taxonomy and terminology of the computer networking area. It also introduces the student to advanced networking concepts, preparing the student for entry Advanced courses in computer networking.

Course Outcomes (COs):

_	otion of the Course Outcome:	Mapping to 1	POs(1-12)/ PS	Os(13-14)
At the e	end of the course the student will be able	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Explain the Uses Of Computer Networks, layered architecture and their significance	2,1	1	12
CO-2	Illustrate the various applications of The Data Link Layer, Medium Access Control Sub layer	2	1, 13	-
CO-3	Comprehend the concepts of network layer, Transport layer for both connection-less and connection-oriented circuits.	1	2, 13	-
CO-4	Implement the different application layer protocols.	2, 13	4	5
CO-5	Design different applications for internet usage in application layer.	2, 13	6	1

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	2.2	2.8	-	2.0	1.0	2.0	-	-	-	-	-	-	2.5	-

Pre-requisites: 1. Basics of Digital Circuits principles

2. Communication principles

Contents:

Unit-I

Introduction: Uses Of Computer Networks, Network Hardware, Network Software reference Models, Example Networks

The Data Link Layer: Data Link Layer Design Issues, Error Detection and Correction Elementary
Data Link Protocols, Sliding Window Protocols, Example Data Link Protocols.

8 Hrs.

Unit-II

The Medium Access Control Sub layer: The Channel Allocation Problem, Multiple Access Protocols, Ethernet, Wireless Lans, Data Link Layer Switching. **7 Hrs.**

Unit-III

The Network Layer: Network Layer Design Issues, Routing Algorithms, Congestion Control Algorithms, Quality of Service, Internetworking, The Network Layer in The Internet. 8 Hrs.

Unit-IV

The Transport Layer: The Transport Service, Elements Of Transport Protocols, Congestion Control Algorithms, The Internet Transport Protocols: UDP, The Internet Transport Protocols: TCP, Performance Issues.

8 Hrs

Unit-V

Application Layer: DNS--The Domain Name System, Electronic Mail, The World Wide Web, Real time Audio and Video, Content Delivery and Peer-To-Peer. **8 Hrs.**

Reference books:

- 1) Andrew S. Tanenbaum, David J. Wetherall, University of Washington, "Computer Networks", Pearson, 5/e, 2011.
- 2) Behrouz Forouzan, "Data Communications and Networking", 4/e, McGraw Hill, 2006
- 3) Alberto Leon-Garcia, Indra Widjaja "Communication Networks",2/e, Tata McGraw-Hill Education India, 2004
- 4) Behrouz Forouzan, "TCP/IP Protocol Suite", 3/e, McGraw Hill, 2005

(3-0-0)3

Contact Hours: 39

Course Learning Objectives (CLOs):

It introduces students to a number of highly efficient algorithms and data structures for fundamental computational problems across a variety of areas. Students are also introduced to techniques such as amortized complexity analysis.

Course Outcomes (COs):

Descr	ription of the Course Outcome:	Mapping to POs(1,12)/ PSO (1,2,3)						
	e end of the course the student will be able to:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)				
CO- 1	Analyse and Apply amortized analysis on data structures, including binary search trees, and disjoint sets.	2	3	1				
CO- 2	Design and Implement operations like searching, insertion, and deletion, traversing mechanism etc. Red black trees, augmenting data structure	3	13	1				
CO- 3	Perform the operation like Union, find min, extract min and delete operation on mergeable heaps	4	13	1				
CO- 4	Implementation and complexity analysis of fundamental algorithms such as graph algorithm ,max flow, and sorting network	3	-	13				
CO- 5	Applications of algorithms in a string matching algorithm	-	13	12				

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	-	3.0	2.66	3.0	-	-	-	1	-	-	-	1.0	1.75	1

Prerequisites:

1.Data structures Programming

Contents:

Unit-I

Amortised analysis: Aggregate analysis, the accounting method, the potential method, dynamic tables, Binary Search Tree Definition and various operations performed on BST, Disjoint sets / union-find Disjoint Set Operations, Linked list representation of disjoint sets, Disjoint-set forests, Analysis of union by rank with path compression.

9 Hrs.

Unit-II

Red Black Trees: Properties, Rotations, Insertion, Deletion, Augmented Data structure, Dynamic order statistics, Retrieving an element with a given rank, How to augment a data structure, Interval trees.

8 Hrs.

Unit-III

Binomial Heaps: Binomial trees and binomial heaps, operations on binomial heaps **Fibonacci Heaps:** Structure of Fibonacci heaps, Mergeable – heap operations, Decreasing a key and deleting a node, Bounding the maximum degree. **8 Hrs.**

Unit-IV

Graph Algorithms: Maximum Flow: Flow Networks, The Ford-Fulkerson method. **Sorting Networks:** Comparison Networks, The zero-one principle, Abitonic sorting network, A merging network, A sorting network

7 Hrs.

Unit-V

String Matching: The naïve string matching algorithm, The Rabin –Karpalgorithm, String matching with finite automata, The Knuth-Morris-Pratt algorithm. **7 Hrs.**

Reference Books:

- 1) Cormen T.H et al, "Introduction to Algorithms", 2/e, PHI, 2001.
- 2) S.Dasgupta, C.H.Papadimitriou, and U.V. Vazirani, "Algorithms", 3/e, Mcgraw-Hill, 2006
- 3) J. Kleinberg and E. Tardos," Algorithm Design", 2/e, Addison-Wesley, 2006

Course Learning Objectives (CLOs):

Students will be exposed to the concepts of Artificial Intelligence & Machine Learning principles and techniques, Introduction to Artificial Intelligence & Machine Learning as cutting edge Technology for emerging Engineers. They also learn to implement Machine Learning algorithms on standard data set.

Course Outcomes (COs):

-	otion of the Course Outcome:	Mapping to	POs(1-12)/ PS	Os(13-14)
At the e	end of the course the student will be able	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Describe the concepts of Artificial Intelligence & Machine Learning.	1	-	-
CO-2	Apply searching and knowledge based techniques for Artificial Intelligence systems.	1	2, 5	-
CO-3	Demonstrate Machine Learning algorithms for given data set.	1, 2	3, 5,13	12,14
CO-4	Illustrate the techniques of Artificial Neural Network and Predictive Analytics.	1	2, 3, 5,13	12
CO-5	Compare Machine Learning & Deep learning techniques for real world applications.	1, 2	5,13	14

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	3.0	3.0	2.0	-	2.0	-	-	-	-	-	-	1.0	2.0	1.0

Pre-requisites:

- 1. Background of data structures, database and basic statistics
- 2. Programming languages

Contents:

Unit-I

Introduction to AI & ML: What is Machine Learning?, What is Artificial Intelligence?, Machine Learning vs AI, Machine Learning vs Deep Learning, Types of Machine Learning, Process of Machine Learning, Production system characteristics -Specialized productions system- Problem solving methods.

8T Hrs.

Unit-II

Searching Techniques: Introduction, Problems, Problem Spaces and search, Heuristic search technique (Breadth First Search, Depth First Search), Knowledge Representation Issues, Introduction to predicate calculus, Knowledge representation using Predicate logic, Resolution, Use of predicate calculus, Knowledge representation using other logic-Structured representation of knowledge. **(8T+2P)Hrs.**

Unit-III

Learning Techniques in Machine Learning: Supervised Learning (Classification & Regression), Unsupervised Learning (Clustering & Dimensionality Reduction) Reinforcement Learning. (9T+4P)Hrs. Unit-IV

Artificial Neural Network: Introduction, Neural Network representation, Perceptrons, Back propagation algorithm. Predictive Analytics-Forecasting and Ensemble Techniques. (8T+2P) Hrs. Unit-V

Deep learning: Introduction and its applications, Machine Learning Applications across Industries (Healthcare, Retail, Financial Services, Manufacturing & Hospitality).

(6T+5P) Hrs.

Reference Books:

- 1) Tom M Mitchell, "Machine Lerning", 1/e, McGraw Hill Education, 2017.
- 2) Stuart Rusell, Peter Norving ," Artificial Intelligence: A Modern Approach", 2/e ,Pearson Education, 2009
- 3) Ethem Alpaydin, "Introduction to Machine Learning", 2/e, MIT press, 2015.
- 4) Elaine Rich, Kevin K and S B Nair, "Artificial Intelligence", 3/e, McGraw Hill Education, 2017.
- 5) AurÈlienGÈron," Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools and Techniques to Build Intelligent Systems", 1/e, Shroff/O'Reilly Media, 2017.
- 6) Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", 2/e, springer series in statistics, 2017.

Course Learning Objectives (CLOs):

In recent years we have witnessed a wave of new Internet of Things (IoT) devices in consumer markets. These include wearable such as wrist watch computers and ear phones for personal entertainment, work assistance and bio-metric monitoring. Enabled with energy-efficient computing cores and sensors, these devices can be programmed to perform a variety of personalized or context-specific tasks at extremely low power consumption. Many believe that IoT will play a key role in the next frontier of computing. At the end of this course, the student should understand the Internet of Things (IoT) technology and should be in a position to develop his/her own product using cloud, python, android, arduino and wireless sensor networks. We will focus on new opportunities and challenges on tiny devices and use of machine learning technology to enhance their usage.

Course Outcomes(COs):

_	otion of the Course Outcome:	Mapping to 1	POs(1-12)/ PS	Os(13-14)
At the e	end of the course the student will be able	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Explain the significance of IoT and its applications and use Arduino/ Raspberry Pi platforms.	1,2	-	4,12
CO-2	Illustrate the Communications and Networking aspects of IoT.	2,3	1	12
CO-3	Write program using python and survey on Wireless protocols	3,5	13,14	12
CO-4	Develop an IoT application using Arduino/ Raspberry Pi.	2,3	5,6,13,14	7,12
CO-5	Analyze IoT applications data.	-	4	8

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	2.0	3.0	3.0	2.0	2.5	ı	ı	ı	ı	ı	ı	1.0	2.0	2.0

Prerequisites:

Computer networks

Contents:

Unit – I

Introduction: Introduction to Internet of Things (IoT): IoT overview, Physical and Logical design of IoT, IoT Enabling Technologies, IoT levels, Domain Specific IoTs: Home Automation, Smart Cities, Smart Environment, Smart Energy, Smart Retail, Smart Logistics, Smart Agriculture, Smart Industry, Smart Health.

10 Hrs.

Unit – II

IoT and M2M: Introduction, M2M, Difference between IoT and M2M, Introduction to Software Defined Networking (SDN) and Network Function Virtualization (NFV) for IoT, MQTT.

Tools for IoT: Introduction, NETCONF, YANG, YIN and BEEP.

10 Hrs.

Unit-III

IoT Systems - Logical Design using Python: Introduction, Python Data Types & Data Structures, Control Flow, Functions, Modules, Packages, File Handling, Classes, Python Packages of Interest for IoT

5 Hrs.

Wireless Protocols for IoT: Bluetooth and Bluetooth Smart, IEEE 802.15.4 WPAN, ZigBee 5 Hrs. Unit-IV

IoT Platform Design Methodology: Introduction, IoT Design Methodology, Case Study on IoT System, IoT Physical Devices and End-Points - Basic Building Blocks of IoT, Arduino/Raspberry Pi & its interfaces, Programming Arduino/Raspberry Pi & other I/O Devices, 6LoWPAN. **12 Hrs.**

Unit-V

Data Analytics for IoT: Introduction, Apache Hadoop, Using Hadoop Map Reduce for Batch Data Analysis, Apache Oozie, Apache Spark, Apache Storm, Using Apache Storm for Real-time Data Analysis

10 Hrs.

Beyond the Syllabus Coverage (Suggestive):

- 1. Students' Survey papers related to IoT
- 2. Laboratory Experiments
- 3. Seminar

Reference books:

- Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands on Approach" Universities Press., 2015
- 2) Srinivasa K G, Siddesh G.M, Hanumantha Raju R —Internet of Things, CENGAGE Leaning India, 2017.
- 3) Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", Wiley, 2013
- 4) Claire Rowland, Elizabeth Goodman et.al.," Designing Connected Products", First Edition, O'Reilly, 2015
- 5) Samuel Greengard, The Internet of Things, MIT Press, 2015
- 6) Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.
- 7) Internet of Things courses from www.edx.org, <u>www.coursera.org</u>, www.nptel.ac.in

Course Learning Objectives (CLOs): Though the Specific objectives of this course depends on the Project chosen, below the generic objectives of this course:

Course Outcomes(COs):

Descript	ion of the course outcome:	Mapping	to POs(1-12)/PS	Os(13-14)
At the er to:	nd of the course the student will be able	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Apply problem solving and programming skills for identified problem statement.	2, 13	1	14
CO-2	Design the system for an identified requirement	3	4	1
CO-3	Analyze and Incorporate the changes in the development cycle.	4, 2	13	1, 14
CO-4	Use modern tools for realizing the solution.	5		14
CO-5	Demonstrate an ability to work in a team	9		11
CO-6	Demonstrate an ability to present the work carried out both in written and oral form.	10		11

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	1.33	3.0	3.0	2.5	3.0	-	-	-	3.0	1.0	-	1	2.5	1.0

Prerequisites: Knowledge of a) Software Engineering concepts b) Any Programming Language

Guidelines for Conduction

Spirit of The Course: To ensure that undergraduates can successfully apply the knowledge they have gained through a project, demonstrates the practical application of principles learnt in different courses and enables students to integrate material learnt at different stages of the curriculum up to the 5th semester; also appreciating the need for domain knowledge for certain applications, and that this may necessitate study within that domain.

- 1. Students Form a Team. Size of the team can vary from 3 to 4. With genuine explanation bigger or smaller is team is allowed.
- 2. Guide for this course is a must and will be chosen by team itself by interacting with faculty.

- 3. In consultation with Guide, Team will prepare the project plan and its specific outcomes, which Team promises/declares to accomplish.
- 4. Project Report: A Course closure document outlining the problems, specifications, including the survey of literature, various results obtained, solutions and the problems faced deviation from the promised milestones, testing report, user manual, appendix reference etc is expected to be produced by each team of project.
- 5. Demonstration, seminar, quiz, tests, Viva-Voce, publications, Reports can be used for the evaluation.
- 6. There can be designated Committee to monitor this process of Mini Project.

Assessment:

CIE - Minimum 2 reviews of the project + any other relevant components

SEE – SEE exam and Project Demonstration + any other component as decided by Project Coordinator and HoD

Note:

- There can be designated Committee to monitor this process of Mini Project.
- An Internal Guide is allotted per group who guides and monitors the project progress.
- Course Outcomes (2 or more) are to be written per project and should map to following Program Outcomes and Program Specific Outcomes. Internal Guide can include other POs apart from the ones mentioned below if those POs are deemed suitable by them.
- Industry, society, etc., Interactions are required as part of Project.
- At the end of the course, students are required to submit a mini-project report.

Course Learning Objectives (CLOs):

This course makes students to know the process of object oriented system modeling, design, and tools used in the industry to enable them to construct software system using various standards and techniques.

Course Outcomes (COs):

Dosco	ription of the Course Outcome:	Mapping to 14)	POs(1-12)/ P	SOs(13-
	e end of the course the student will be able to:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO- 1	Apply the fundamental object orientation concept in solving problem by indentifying classes, objects, their properties association	1,2	-	12
CO- 2	Analyze the problem scenario and model the system using UML diagrams	1,2	3,5	12
CO- 3	Illustrate the concept of process overview, system conception, domain analysis.	1	2,3	12
CO- 4	Describe the concepts of application analysis, system design.	1,2	3	12
CO- 5	Explain the concept of class design implementation modeling.	1,2	-	12

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	3.0	2.8	2.0		2.0							1.0		

Pre-requisites:

- 1. Exposure to basics of object oriented Programming Terminologies
- 2. Software Engineering

Contents:

Unit-I

Introduction, Modeling Concepts, class Modeling: What is Object Orientation? What is OO development? OO themes; Evidence for usefulness of OO development; OO modeling history.Modeling as Design Technique: Modeling; abstraction; The three models. Class Modeling: Object and class concepts; Link and associations concepts; Generalization and inheritance; A sample class model; Navigation of class models; Practical tips.

Unit-II

Advanced Class Modeling, State Modeling, Advanced State Modeling: Advanced object and class concepts; Association ends; N-ary associations; Aggregation; Abstract classes; Multiple inheritance; Metadata; Reification; Constraints; Derived data; Packages; Practical tips. State Modeling: Events, States, Transitions and Conditions; State diagrams; State diagram behavior; Practical tips,: Nested state diagrams; Nested states; Signal generalization; Concurrency; A sample state model; Relation of class and state models; Practical tips.

Unit-III

Interaction Modeling: Interaction Modeling: Use case models; Sequence models; Activity models. Use case relationships; Procedural sequence models; Special constructs for activity models **Process Overview, System Conception, Domain Analysis:** ProcessOverview: Development stages; Development life cycle. System Conception: Devising a system concept; Elaborating a concept; Preparing a problem statement Domain Analysis: Overview of analysis; Domain class model; Domain state model; Domain interaction model; Iterating the analysis. **9 Hrs Unit-IV**

Application Analysis, System Design: Application Analysis: Application interaction model; Application class model; Application state model; Adding operations. Overview of system design; Estimating performance; Making a reuse plan; Breaking a system in to sub-systems; Identifying concurrency; Allocation of sub-systems; Management of data storage; Handling global resources; Choosing a software control strategy; Handling boundary conditions; Setting the trade-off priorities; Common architectural styles; Architecture of the ATM system as the example 7 Hrs.

Unit- V

Class Design, Implementation Modeling,: Class Design: Overview of class design; Bridging the gap; Realizing use cases; Designing algorithms; Recurring downwards, Refactoring; Design optimization; Reification of behavior; Adjustment of inheritance; Organizing a class design; ATM example. Implementation Modeling: Overview of implementation; Fine-tuning classes; Fine-tuning generalizations; Realizing associations; Testing. Legacy Systems: Reverse engineering; Building the class models; Building the interaction model; Building the state model; Reverse engineering tips; Wrapping; Maintenance.

7 Hrs.

Reference books:

- 1) Michael Blaha, James Rumbaugh, "Object-Oriented Modeling and Design with UML", 2 /e, Pearson Education, 2005.
- 2) Ali Bahrami, "Object oriented systems development", McGrawHill, 1999.
- 3) Booch, G., Rumbaugh and Jacobson, "The Unified Modeling Language User Guide", 2/e, Pearson, 2005

Course Objectives: To understand how an iterative, incremental development process leads to faster delivery of more useful software. To understand the essence of agile development methods .To understand the principles and practices of extreme programming and to understand the roles of prototyping in the software process, understand the concept of Mastering Agility.

Course Outcome (CO's):

-	tion of the course outcome:	Mapping	to POs(1-12)/PS	Os(13-14)
At the enable to:	nd of the course the student will be	Substantial Level (3)	Substantial Level (3)	Substantial Level (3)
CO-1	Analyse The XP Lifecycle, XP Concepts, Adopting XP.	1	-	12
CO-2	Implement Work on Pair Programming, Root-Cause Analysis.	1	4	13
CO-3	Design Retrospectives, Planning, Incremental Requirements, Customer Tests.	1	4	12
CO-4	Implement Concepts to Eliminate Waste.	2	-	1
CO-5	Determine value to productive systems through Agile methods	4	-	13

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	2.5	3.0	-	2.0	-	1	-	1	-	-	-	1.0	1.0	-

Pre-requisites: 1. Knowledge of Software Engineering

Contents:

Unit - I

Why Agile?: Understanding Success, Beyond Deadlines, The Importance of Organizational Success, Enter Agility, How to Be Agile?: Agile Methods, Don't Make Your Own Method, The Road to Mastery, Find a Mentor.

Understanding XP: The XP Lifecycle, The XP Team, XP Concepts, Adopting XP: Is XP Right for Us?, Go!, Assess Your Agility.07 Hrs.

Unit - II

Practicing XP: Thinking: Pair Programming, Energized Work, Informative Workspace, Root-Cause Analysis, Retrospectives.

Collaborating: Trust, Sit Together, Real Customer Involvement, Ubiquitous Language, Stand-Up Meetings, Coding Standards, Iteration Demo, Reporting. **Releasing:** "Done Done", No Bugs,

Version Control, TenMinute Build, Continuous Integration, Collective Code Ownership, Documentation.

08 Hrs.

Unit - III

XP-Planning: Vision, Release Planning, The Planning Game, Risk Management, Iteration Planning, Slack, Stories, Estimating, Developing: Incremental Requirements, Customer Tests, Test-Driven Development, Refactoring, Simple Design, Incremental Design and Architecture, Spike Solutions, Performance Optimization, Exploratory Testing. **08 Hrs**.

Unit - IV

Mastering Agility: Values and Principles: Commonalities, About Values, Principles, and Practices, Further Reading.

Improve the Process: Understand Your Project, Tune and Adapt, Break the Rules.

Rely on People: Build Effective Relationships, Let the Right People Do the Right Things, Build the Process for the People.

Eliminate Waste: Work in Small, Reversible Steps, Fail Fast, Maximize Work Not Done, Pursue Throughput.

08 Hrs.

Unit - V

Deliver Value: Exploit Your Agility, Only Releasable Code Has Value, Deliver Business Results, Deliver Frequently.

Seek Technical Excellence: Software Doesn't Exist, Design Is for Understanding, Design Trade-offs, Quality with a Name, Great Design, Universal Design Principles, Principles in Practice, Pursue Mastery. **08 Hrs.**

Reference Books:

- 1) James shore, Chromatic, "The Art of Agile Development (Pragmatic guide to agile software development)", O'Reilly Media, Shroff Publishers & Distributors, 2013.
- 2) Robert C. Martin, "Agile Software Development, Principles, Patterns, and Practices", Prentice Hall; 1/e, 2002
- 3) Craig Larman, "Agile and Iterative Development A Manger's Guide", Pearson Education, 1/e, India, 2004.

UG-2021-22 Scheme for III Semester

			Teaching		Examination					
Course	Course	Course Title	L-T-P		CIE	Theory	y (SEE)	Praction	cal (SEE)	
Code	Category	Course True	L-1-1 (Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration	
			(III S/ VV CCII)		Marks	Marks	in hours	Marks	in hours	
18UMAC300	BS	Engineering Mathematics-III	3 - 0 - 0	3	50	100	3	-	1	
18UISC300	PC	Data Structures	3 - 2 - 0	4	50	100	3	-	-	
18UISC301	PC	Logic Design	3 - 0 - 0	3	50	100	3	-	-	
18UISC302	PC	Discrete Mathematics & Graph Theory	4 - 0 - 0	4	50	100	3	-	-	
18UISC303	PC	Unix and Shell Programming	3 - 0 - 2	4	50	100	3	-	-	
18UISC304	PC	Computer Organization and Architecture	3 - 0 - 0	3	50	100	3	-	1	
18UISL305	PC	Data Structures Laboratory	0 - 0 - 3	1.5	50	-	-	50	3	
18UISL306	PC	Logic Design Laboratory	0 - 0 -3	1.5	50	-	-	50	3	
Total			19 - 2 - 8	24	400	600		100		

CIE: Continuous Internal Evaluation

SEE: Semester End Examination*

L: Lecture T: Tutorials P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks

BS- Basic Science, PC- Program Core

Scheme for IV Semester

			Teachi	ing	Examination						
Course	Course	Course Title	L-T-P		CIE	E Theory (S		(SEE) Practic			
Code	Category	Course Title	(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration		
			(IIIS/WEEK)		Marks	Marks	in hours	Marks	In hours		
18UMAC400	BS	Engineering Mathematics - IV	3 - 0 - 0	3	50	100	3	-	-		
18UISC400	PC	Object Oriented Programming	4 - 0 - 0	4	50	100	3	-	-		
18UISC401	PC	Microcontroller	4 - 0 - 0	4	50	100	3	-	-		
18UISC402	PC	Finite Automata and Formal Language	3 - 2 - 0	4	50	100	3	-	-		

18UISC403	PC	Design and Analysis of Algorithms	3 - 0 - 0	3	50	100	3	-	-
18UISC404	PC	Operating System	3 - 0 - 0	3	50	100	3	-	-
18UISL405	PC	Object Oriented Programming Laboratory	0 - 0 - 3	1.5	50	-	-	50	3
18UISL406	PC	Microcontroller Laboratory	0- 0- 3	1.5	50	-	-	50	3
18UISL407	PC	Introductory Project	0 - 0- 2	1	50	-	-	-	-
Total			20 - 2 -8	25	450	600		100	

CIE: Continuous Internal Evaluation

SEE: Semester End Examination* L: Lecture

T:

Tutorials P: Practical

BS- Basic Science, PC- Program Core

^{*}SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

Scheme for V Semester

			Teachi	ng		E	Examinat	tion	
Course	Course	Course Title	L-T-P		CIE	Theor	y (SEE)		ctical EE)
Code	Category	Course Title	(Hrs./Week)				Duration in Hrs.		
18UHUC500	HU	Management, Entrepreneurship and IPR	4 - 0 - 0	4	50	100	3	-	-
18UISC500	PC	Software Engineering	4 - 0 - 0	4	50	100	3	-	-
18UISC501	PC	Java and Web Technology	4 - 0 - 0	4	50	100	3	-	-
18UISC502	PC	Database Management System	3 - 0 - 0	3	50	100	3	-	-
18UISC503	PC	Computer Networks	3 - 0 - 0	3	50	100	3		
18UISE5XX	PE	Program Elective-1	3 - 0 - 0	3	50	100	3		
18UISL504	PC	Database Management System Lab	0 - 0 - 3	1.5	50			50	3
18UISL505	PC	Java Lab	0 - 0 - 3	1.5	50			50	3
18UISL506	PC	Minor Project-1	0 - 0 - 2	1	50				
18UHUL507	HU	Soft skills/Aptitude	0 - 0 - 2	1	50				
]	Γotal	21 - 0 - 10	26	500	600		100	_

CIE: Continuous Internal Evaluation **SEE**: Semester End Examination* **L**: Lecture**T**: Tutorials **P**: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks PC- Program Core HU-Humanities, PC- Program Core

Minor project – 1 is undertaken to focus on the domain related problem definitions, building prototypes which can lead to take up the project in the higher semester(s). The work based on the core courses studied shall be used to formulate the problem. The team consisting of 10-12 students shall be asked to identify the problems related to community and try to propose the solution. The faculty members handling the courses for that semester shall guide the students. A committee consisting of minimum 3 faculty members shall evaluate at the end for CIE. There is no SEE for Minor project-1.

Soft skills/Aptitude: This is included with an objective of improving the communication skills, proficiency in English language and aptitude ability of the student. This is a credit course and aimed to enhance the employability. Both the internal and external resource persons shall be engaged in imparting the related knowledge and shall have only CIE as the evaluation component. There shall be one test conducted at the end for 25 marks in Aptitude testing and there shall be one presentation by the student for 25 marks or any other suitable testing components. The

arrangement for CIE evaluation is to be done by the department and maintain the relevant documents.

Management, Entrepreneurship and IPR course shall be taught in the V semester only. However, the departments can take flexibility of deciding the contents of the course as per the department specific requirements. The credit for this course is 4 and common to all departments

Elective

Code	Elective – 1					
18UISE511	System software					
18UISE512	Advanced Data Structures					
18UISE513	Real Time Operating Systems and Embedded Systems					

Scheme for VI Semester

Course Code	Course Category	Course Title	Teaching		Examination				
			L-T-P (Hrs./Week)	Credits	CIE Theo		ry (SEE)	Practical (SEE)	
					Max. Marks	*Max. Marks	Duration in Hrs.	Max. Marks	Duration in Hrs.
18UISC600	PC	Artificial Intelligence and Machine Learning	3-0-2	4	50	100	3	-	-
18UISC601	PC	Internet of Things	4-0-0	4	50	100	3	-	-
18UISE6XX	PE	Program Elective-2	3-0-0	3	50	100	3	-	-
18UISE6XX	PE	Program Elective-3	3-0-0	3	50	100	3	-	-
18UISO6XX	OE	Open Elective	3-0-0	3	50	100	3		
18UISL602	PC	Computer Networks Lab	0-0-3	1.5	50			50	3
18UISL603	PC	Web Technology Lab	0-0-3	1.5	50			50	3
18UISL604	PC	Minor Project-2	0-0-4	2	50			50	3
18UHUL605	HU	Soft skills/Aptitude	0-0-2	1	50				
Total			16 - 0 -14	23	450	500		150	

CIE: Continuous Internal Evaluation SEE: Semester End Examination* L: Lecture

T: Tutorials P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

PC- Program Core, PE-Program Elective, OE- Open Elective and HU- Humanities.

Scheme for VII Semester

	Course Category	Course Title	Teaching		Examination					
Course Code			L-T-P (Hrs./Week)	Credits	CIE	Theory	(SEE)	Practical (SEE)		
					Max.	*Max.	Duration	Max.	Duration	
					Marks	Marks	in Hrs.	Marks	in Hrs.	
18UISC700	PC	Big Data	3-2-0	4	50	100	3	-	-	
		Analytics								
18UISC701	PC	Storage	4-0-0	4	50	100	3	-	-	
		Management								
18UISO7XX	PE	Program	3-0-0	3	50	100	3	-	-	
		Elective-4								
18UISE7XX	OE	Open	3-0-0	3	50	100	3			
		Elective								
18UISL702	PC	Big Data	0-0-2	1	50			50	3	
		Analytics								
		Lab								
18UISL703	PC	Major	0-0-4	2	50			50	3	
		Project								
		Phase-1								
18UISL704	PC	Internship	4weeks	2	50			50	3	
Total			13-2-6	19	350	400		150		

CIE: Continuous Internal Evaluation

SEE: Semester End Examination* L: Lecture

T:

Tutorials

P: Practical

PC- Program Core

^{*}SEE for theory courses is conducted for 100 marks and reduced to 50 marks

Elective

Code	Elective – 4	Code	Open Elective
18UISE711	Digital Image Processing	18UISO721	Cloud Computing
18UISE712	Mobile Communication and	18UISO722	Supply Chain Management
18UISE713	Deep Learning	18UISO723	Virtual Reality and Augmented
18UISE714	Software Testing		

Scheme for VIII Semester

			Teaching		Examin	ation			
Course	Course	Course Title	L-T-P		CIE	Theory	(SEE)	Practical (SEE)	
Code	Category	Course Title	(Hrs./Week)	Credits	Max.	*Max.	Duration	Max.	Duration
			(III)		Marks	Marks	in Hrs.	Marks	in Hrs.
18UISC800	PC	Cryptography	4-0-0	4	50	100	3	-	-
		and Cyber							
		Security							
18UIS8XX	PE	Program	3-0-0	3	50	100	3	-	-
		Elective-5							
18UISO8XX	OE	Open	3-0-0	3	50	100	3		
		Elective							
18UISL801	PC	Technical	0-0-2	1	50				
		Seminar							
18UISL802	PC	Major Project	0-0 -12	7	50			50	3
		Phase-2							
Total			10-0-14	18	250	300		50	

PC- Program Core ,PE-Program Elective, OE- Open Elective

Code	Program Elective-5	Code	Program / Open Elective Open Elective
18UISE811	Wireless Sensor Networks	18UISO821	Dev-Ops
18UISE812	Block Chain Management	18UISO822	Data Sciences
18UISE813	Data Compression	18UISO823	Computer Vision

18UISL704 Internship 4 weeks - 3

Contact Hours: 4 weeks

Course Learning Objectives (CLOs): The internship module aims to provide the student with a practice-oriented and hands-on working experience in the real world or industry, and to enhance the student's learning experience i.e. to integrate theory and practice. It gives an opportunity to develop a right work attitude, self-confidence, interpersonal skills and ability to work as a team in a real organizational setting. Also, to further develop and enhance operational, customer service, competency in specific areas related to student's area of career interest, skills in research, analysis and other life-long knowledge and skills in a real-world work environment. Through Internship, students can get pre-employment training and the company or organization can assess the performance of the student and offer the student an employment opportunity after his/her graduation, if it deems fit.

Course Outcomes (COs):

Descrip	tion of the Course Outcome:	Mapping to POs(1-	-12)/ PSOs (13-1	14)
_	nd of the course the student will be able to:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Solve real life challenges in the workplace by analyzing work environment and conditions, and selecting appropriate skill sets acquired from the course.	1, 2	4	12
CO-2	Communicate and collaborate effectively and appropriately with different professionals in the work environment.	5,10	8	6,7,11,12
CO-3	Demonstrate critical thinking, problemsolving skills and creativity and innovation by analyzing underlying issue/s to challenges.	1,2,3,4,5,13,14	6,7,8	12
CO-4	Demonstrate the application of knowledge and skill sets acquired from the course and workplace in the assigned job function/s.	1,2,3,4,5,13,14	6,7,8	12
CO-5	Demonstrate an ability to work as a professional in a heterogeneous team environment.	9,10,11	8	12

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	3.0	3.0	3.0	2.66	3.0	1.66	1.66	2.0	3.0	3.0	2.0	1.0	3.0	3.0

The students are to undergo internship in Private industries/R&D organizations/Centers of Excellence/Laboratories of Reputed Institutions/Govt. & Semi Govt. organizations, PSUs, construction companies, entrepreneurial organizations, inter departments within the college etc. to get exposure to the external world for a period of 4 weeks in the summer vacation after VI sem and before start of VII semester. The students are to prepare a report on the internship work carried out. The internal faculty shall monitor the

student and award CIE marks. There is a SEE in which the student shall present his work before a panel of examiners consisting of HoD, Guide and one faculty member during VII semester. The performance shall be communicated to the COE office and the same shall reflect in the VII semester grade card.

Course Learning Objectives (CLOs): To help the students design and develop secure solution to provide confidentiality and integrity, user authentication, secure network and transport layer communication, secure wireless communication, defeat vulnerabilities and electronic payment. This fundamental course covers the theory of encryption and standard protocols for data communications and network security. Topics that may be covered include PKI, digital signatures, message authentication codes, hash functions, etc. An examination of network security defenses and countermeasures are also covered.

Course Outcomes (COs):

	ription of the Course Outcome: e end of the course the student will be able to:	Mapping to POs(1-12)/PSOs(13-14)				
		Substantial Level (3)	Moderate Level (2)	Slight Level (1)		
CO- 1	Identify and inspect vulnerabilities and defense strategies of attacks on a network.	1		12		
CO- 2	Apply and analyze different cryptographic algorithms for secure data transmission using recent tools.	5	2	-		
CO- 3	Implement DES, AES, MAC and other applications.	-	2,5	12		
CO- 4	Analyze the basics of GSM, UMITS.	-	5	2		
CO- 5	Implement Cryptographic algorithms for Authentication and Kerberos. Implement the Firewall Policy in the domain of security.	-	3	5		

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	3.0	1.6	2.0	-	2.5	ı	ı	ı	-	1	ı	1.0	ı	-

Prerequisites:

Computer Networks

Contents:

Unit-I	
Introduction: Cyber attacks, motives, common attacks, vulnerabilities, Defence strategies and	
Techniques, Access control-authentication and authorization, data protection, prevention and	
detection, response, recovery, and forensics, guiding principles. ARP and network layer protocols, IP	10
Version 4, IP Version 6.	Hrs
Unit-II	
Basics of Cryptography: Preliminaries, Secret versus "Public" key cryptography, type of attacks,	
Mono alphabetic ciphers, Poly alphabetic Ciphers, Elementary Transposition ciphers, other cipher	10
properties, confusion and diffusion, block ciphers and stream ciphers.	Hrs
Unit-III	
Secret Key Cryptography: Product ciphers, DES Construction, Fiestel Structure, Round Function,	10
Modes of Operation, MAC and Other Applications, attacks.	Hrs
Unit-IV	
Cellphone Security: Entities Involved, Security Goals, GSM(2G) Security, Entity Authentication	
and key agreement, Encryption, Problems and Drawbacks, Security in UMITS(3G), Security	10
Enhancements, Integrity Protection and Encryption.	Hrs
Unit-V	
Authentication: One-way authentication, password-based authentication, certificate-based	
authentication, mutual authentication. Authentication-II centralized authentication, the needham	
Schroeder protocol, preliminary version1, 2 and 3, Kerberos. Firewalls: Basics of Firewall	
Functionality, policies and access control lists, firewall types, practical issues, placement of	
firewalls, firewall configuration, personal firewalls: A case study, Chains and tables, commands.	12
Case Study-Cyber Law and forensics.	Hrs

- 1) Bernard Menezes, Network Security and Cryptography, Cengage Learning, Cengage Learning India Pvt. Ltd, Second Impression 2018.
- 2) Behrouz A. Forouzan, Cryptography and Network Security, Tata McGraw Hill, E/2, 2019.
- 3) William Starling, Cryptography and Network Security, 5th Edition, Pearson.
- **4**) Bruce Schneier, Applied Cryptography, Second Edition: Protocols, Algorthms, and Source Code in C (cloth), John Wiley & Sons, Inc., ISBN: 0471128457

Course Learning Objectives (CLOs): To help the students design and develop secure solution to provide confidentiality and integrity, user authentication, secure network and transport layer communication, secure wireless communication, defeat vulnerabilities and electronic payment. Block chain is a distributed, decentralized public ledger. Block chain simply means chain of blocks. It means digital information ("the block") stored in a public database ("the chain"). Blocks on a Blockchain have three parts:

First Blocks show information like date, time and amount. Second Blocks store information about who carried out the transaction by using digital signature instead of identifiable names. Third Blocks store information that makes them different from other blocks by the use of a unique code called HASH.

This fundamental course covers the theory of Block chain and standard protocols for data communications and network security. Topics that may be covered include Supply Chain and Logistics, digital signatures, message authentication codes, hash functions, etc. An examination of network security defenses and countermeasures are also covered.

Course Outcomes (COs):

_	end of the course the student will be able to:	Mapping to POs(1,12)/ PSO (13-14)					
		Substantial Level (3)	Moderate Level (2)	Slight Level (1)			
CO-1	Identify and inspect vulnerabilities In Block chain Concepts.	1	-	12			
CO-2	Apply and analyze different cryptographic algorithms for secure data transmission using recent Tools. Block chain Application Components.	5	2	-			
CO-3	Analyze the basics of Ethereum Development Tools	-	2	14			
CO-4	Discuss electronic payment with help of Authentication and Authorization. Externally Owned Account(EOAs), Key pairs	-	-	2			
CO-5	Implementing the Cryptographic algorithms Compiling and Deploying a Contract. Working with EOA Accounts	-	-	5			

PO's	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	3.0	2.0	1	1	3.0	1	1	1	1	ı	ı	ı	ı	1

Prerequisites:

Contents:

Introduction: Block chain Concepts, Block chain Evolution, Block chain structure, Block chain characteristics, Block chain Application example Escrow, Block chain stack, Block chain Decentralized Computation Platform-Ethereum, Decentralized Storage platform-Swarm, Decentralized Massaging platform-Whisper, Smart Contracts, Decentralized Applications, Tools and Interfaces, from Web 2.0 to the next generation decentralized web, Domain specific Block chain Applications, FinTech, Internet of Things, Industrial and Manufacturing, Registry of Assets and Inventory, energy, Supply Chain and Logistics, Records and Identities, Healthcare, Block chain Benefits and Challenges	08 Hrs
Unit-II	
Blockchain Application Templates: Block chain Application Components, Blockchain Application Components, Design Methodology for Block chain Applications, Blockchain Application Templates: Many-to-One, Many-to-One for IoT Applications, Many-to-Many or Peer-to-Peer, One-to-One for Financial Applications.	08 Hrs
Unit-III	
Block chain Components and Applications: Setting up Ethereum Development Tools, Ethereum Clients, Go-Ethereum Clien, Python Ehtereum Client(Python App), Ethereum Languages, Solidity, TestIRPC, Mist Ethereum Wallet, MetaMask, Web3 JavaScript API, Truffle.	08 Hrs
TI:4 TV/	
Ethereum Accounts: Ethereum Accounts, Externally Owned Account (EOAs), Keypairs, Working with EOA Accounts, Creating Account, Listing Accounts, Updating Accounts, Checking Balance, Account Transactions, Working with Contract Accounts, Computing and Deploying Contract, Interacting with Contracts, Installing or Watching a Contract.	08 Hrs
Unit-V	
Smart Contracts: Structure of a Contract, Setting up and Interacting with a contract using Get Client, Compiling and Deploying a Contract, Interacting with a contract, Gas, Logs, Events, Setting up and Interacting with a Contract Using Mist Wallet, Compiling and Deploying Contract, Interacting with a Contract, Smart Contract Examples, Event Registration Contract, Voting Contract, Name Registry Contract, IoT Smart Switch Contracts, Smart Contract Patterns, Withdrawal, Access Restriction, Rejecter, Circuit Breaker, Allow Once per Account, Case Study.	07 Hrs

- 1) ArshdeepBahga, Vijay Madisetti, "Block chain Applications: A Hands-On Approach" Universities Press, 2019.
- 2) Blockchain Technology Concepts and Applications by Kumar Saurabh and Ashutosh Saxena.
- 3) The Block chain Developer A Practical Guide for Designing, Implementing, Publishing, Testing and Securing Distributed Blockchain Based Projects by EladElrom.

18UISO822 Data Science (3-0-0) 3

Contact Hours: 39

Course Learning Objectives (CLOs): This course will enable students to define data science and its fundamentals demonstrate the process in data science, Explain machine learning algorithms necessary for data sciences, Illustrate the process of feature selection and analysis of data analysis algorithms and Visualize the data and follow of ethics

Course Outcomes (COs):

-	end of the course the student will be able to:	Mapping to POs(12)/PSOs(13-14)				
		Substantial Level (3)	Moderate Level (2)	Slight Level (1)		
CO-1	Define data science and its fundamentals	-	-	4		
CO-2	Demonstrate the process in data science	-	3	-		
CO-3	Explain machine learning algorithms necessary for data sciences	-	-	-		
CO-4	Illustrate the process of feature selection and analysis of data analysis algorithms	-	2	-		
CO-5	Visualize the data and follow of ethics	1	-	-		

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mapping Level	3.0	2.0	2.0	1.0	-	-	-	1	1	-	-	1	-	-

Prerequisites:

Database Management Systems

Contents:

Unit-I	
Introduction: What is Data Science? Big Data and Data Science hype – and getting past the hype,	
Why now? - Datafication, Current landscape of perspectives, Skill sets. Needed Statistical	
Inference: Populations and samples, Statistical modeling, probability distributions, fitting a model,	
- Introduction to R	08 Hrs

Unit-II Exploratory Data Analysis and the Data Science Process: Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA, The Data Science Process, Case Study: RealDirect (online real estate firm). Three Basic Machine Learning Algorithms: Linear	
Regression, kNearest Neighbors (k-NN), k-means	08 Hrs
Unit-III One More Machine Learning Algorithm and Usage in Applications: Motivating application: Filtering Spam, Why Linear Regression and k-NN are poor choices for Filtering Spam, Naive Bayes and why it works for Filtering Spam, Data Wrangling: APIs and other tools for scrapping	
the Web.	10 Hrs
Unit-IV Feature Generation and Feature Selection (Extracting Meaning From Data): Motivating application: user (customer) retention. Feature Generation (brainstorming, role of domain expertise, and place for imagination), Feature Selection algorithms. Filters; Wrappers; Decision Trees; Random Forests. Recommendation Systems: Building a User-Facing Data Product, Algorithmic ingredients of a Recommendation Engine, Dimensionality Reduction, Singular Value Decomposition, Principal Component Analysis, Exercise: build your own recommendation system.	08 Hrs
Mining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs, Data Visualization: Basic principles, ideas and tools for data visualization. Data Science and Ethical Issues, Discussions on privacy, security, ethics, Next-generation data scientists	07 Hrs

- 1) Doing Data Science Cathy O'Neil and Rachel Schutt Straight Talk From The Front line. O'Reilly 2014.
- 2) Mining of Massive Datasets. v2.1 Jure Leskovek, Anand Rajaraman and Jeffrey Ullman Cambridge University Press 2014.
- 3) Machine Learning: A Probabilistic Perspective Kevin P. Murphy 2013.
- 4) Data Mining: Concepts and Techniques Jiawei Han, Micheline Kamber and Jian Pei Third Edition 2012.

PG-2018-19

SDM College of Engg.&Tech., Dharwad Scheme for M.Tech.(IT) **Scheme of Teaching and Examination**

I Semester M. Tech.

		Teachi	ng	Examination					
Course Code	Course Title	L-T-P	Credits	CIE	Theory (SEE)		Practical (SEE)		
		(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration	
18PITEC100	Big Data Analytics	4-0-0	4	50	100	3			
18PITEC101	Applied Mathematics	4-0-0	4	50	100	3			
18PITEEXXX	Elective 1	4-0-0	4	50	100	3			
18PITEEXXX	Elective 2	4-0-0	4	50	100	3			
18PITEEXXX	Elective 3	3-0-2	4	50	100	3			
18PITEL102	Data Analytics Lab	0-0-3	2	50			50	3	
18PITEL103	** Seminar	0-0-3	1	100					
	Total	19-0-8	23	400	500		50		

CIE: Continuous Internal Evaluation

SEE: Semester End Examinations

L: Lecture T: Tutorials P: Practical

Elective List:

Course Code Elective Courses		Course Code	Elective Courses
18PITEE125	Agile Technology	18PITEE128	Fuzzy System
18PITEE126	Web Services	18PITEE129	Artificial Intelligence
18PITEE127	Internet of things		

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks

^{**} Seminar is to be conducted every week and 2-3 students/week will present a topic from emerging areas in power systems preferably the contents not studied in their regular courses. The seminar shall be evaluated by 3 faculty members having specialization in power system and allied areas.

II Semester M. Tech.

Course Code	Course Title	Teaching		Exan	nination	1		
		L-T-P	Credits	CIE	Theory	y (SEE)	Praction	cal (SEE)
		(Hrs/Week)		Max.	*Max.	Duration	Max.	Duration
				Marks	Marks	in hours	Marks	in hours
18PITEC200	Machine Learning	4-0-0	4	50	100	3		
18PITEC201	Natural Language Processing	3-0-2	4	50	100	3		
18PITEEXXX	Elective 4	4-0-0	4	50	100	3		
18PITEEXXX	Elective 5	4-0-0	4	50	100	3		
18PITEEXXX	Elective 6	4-0-0	4	50	100	3		
18PITEL202	Machine learning Lab	0-0-3	2	50			50	3
18PITEL203	** Seminar	0-0-3	1	100				
Total		19-0-8	23	400	500		50	

CIE: Continuous Internal Evaluation **SEE**: Semester End Examinations

L: Lecture

T: Tutorials

P: Practical

Elective List:

Course Code	Elective Courses	Course Code	Elective Courses
18PITEE225	Web Services	18PITEE228	Predictive Modeling
18PITEE226	Cloud Computing	18PITEE229	Optimization Technique
18PITEE227	Simulation and Modeling		

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks

^{* *} Seminar is to be conducted every week and 2-3 students/week will present a topic from emerging areas in power systems preferably the contents not studied in their regular courses. The seminar shall be evaluated by 3 faculty members having specialization in power system and allied areas.

SDM College of Engg.&Tech., Dharwad Scheme for M.Tech.(IT) Scheme of Teaching and Examination IIISemester M. Tech.

		Teaching		Examination				
Course Code	Course Title	L-T-P-S	Credits	CIE	Theory (SEE)		Practical (SEE)	
		(Hrs/Week)		Max.	*Max.	Duration	Max.	Duration
		(III S/ W CCK)		Marks	Marks	in hours	Marks	in hours
18PITEC300	Computer Vision	4-0-0	4	50	100	3		
18PITEEXX	Elective 7	4-0-0	4	50	100	3		
18PITELXXX	Internship in	** Min 4	3	50/50	100	3	50	3
	Industry/R&D	weeks during						
	organization/	vacation after						
	Elective 8	2 nd sem/						
		3-0-0						
18PITEL302	*** Project Phase 1	0-0-15	9	50			50	3
	Total	8/11-0-15	20	200	200/300		100	

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

** The students are expected to undergo training in industry for a period of *four weeks* during the vacation immediately after completion of II Semester examination. A faculty is to be allotted to guide the student. A committee consisting of three faculty members shall evaluate the work carried out and the knowledge the students have acquired. **OR The students can take one elective course if they do not undergo internship.**

Project phase-I: The students are expected to formulate the problem and carry out the intensive literature survey along with preliminary investigations supporting the project phase-II in IV semester

Course code(Elective 7)	Elective Courses	Course code	Elective Courses
		(Elective 8)	
18PITEE325	Modern Cryptography	18PITEE335	Pattern Recognition
18PITEE326	Deep Learning	18PITEE336	Distributed
			Computing
18PITEE327	Knowledge Discovery	18PITEE337	Bio Informatics

IV Semester M. Tech.

		Teaching		Examination								
Course Code	Course Title	TTDC		CIE	Theory (SEE)		Practical (SEE)					
	000130 11010	L-T-P-S (Hrs/Week)	(Hrs/Wook)	(Hrs/Wook)	Hrs/Wook)	(Hrs/Wook)C	Credits	Max.	*Max.	Duration	Max.	Duration
		(IIIs/ Week)		Marks	Marks	in hours	Marks	in hours				
18PITEL400	Project phase-II	0-0-20	22	100	-	-	100	3				
To	otal	0-0-20	22	100	-		100					

CIE: Continuous Internal Evaluation SEE: Semester End Examination

L: Lecture T: Tutorials P: Practical

Dr. Jagadeesh D. Pujari HOD, ISE

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

^{**} Project phase-II: The students are expected to work on a project for the full semester in an industry or an institution

18PITEC100	Big Data Analytics	(4-0-0) 4

Course Learning Objectives (CLO's):

Students will learn to optimize business decisions and create competitive advantage with Big Data analytics and learn to explore the fundamental concepts of big data analytics and analyze the big data using intelligent techniques and understand the various search methods and visualization techniques. They also learn to use various techniques for mining data stream and understand the applications using Map Reduce Concepts.

Course Outcome (CO's):

	ription of the Course Outcome(CO's): end of the course the student will be able	Mapping to POs(1-3)				
At the 6	to:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)		
CO-1	Demonstrate the big data platform and explore the big data analytics techniques business applications.	1				
CO-2	Design efficient algorithms for mining the data from large volumes.		1			
CO-3	Analyze the HADOOP and Map Reduce technologies associated with big data analytics.			2		
CO-4	Illustrate on Big Data applications using Pig and Hive.		2			
CO-5	Demonstrate the fundamentals of various big data analytics techniques.	3				

POs	PO-1	PO-2	PO-3
Mapping Level	2.5	1.5	3

Pre-requisites:

- 1. Knowledge of data structure, data bases and basic statistics.
- 2. Some programming experiences

Contents:

1	Introduction to big data: Introduction to Big Data Platform – Challenges of Conventional	
	Systems - Intelligent data analysis - Nature of Data - Analytic Processes and Tools - Analysis	
	vs Reporting	10Hrs.
2	Mining data streams: Introduction To Streams Concepts - Stream Data Model and	10
	Architecture - Stream Computing - Sampling Data in a Stream - Filtering Streams Counting	Hrs.
	Distinct Elements in a Stream - Estimating Moments - Counting Oneness in a Window -	

	Decaying Window - Real time Analytics Platform(RTAP) Applications - Case Studies - Real	
	Time Sentiment Analysis- Stock Market Predictions.	
3	Hadoop: History of Hadoop- the Hadoop Distributed File System - Components of	
	HadoopAnalysing the Data with Hadoop- Scaling Out- Hadoop Streaming- Design of HDFS-	
	Java interfaces to HDFS Basics- Developing a Map Reduce Application-How Map Reduce	
	Works-Anatomy of a Map Reduce Job run-Failures-Job Scheduling-Shuffle and Sort - Task	10
	execution - Map Reduce Types and Formats- Map Reduce Features-Hadoop environment.	Hrs
4	Frameworks: Applications on Big Data Using Pig and Hive – Data processing operators in Pig	
	- Hive services - HiveQL - Querying Data in Hive - fundamentals of HBase and ZooKeeper -	10
	IBM InfoSphereBigInsights and Streams.	Hrs
5	Predictive Analytics- Simple linear regression- Multiple linear regression- Interpretation of	
	regression coefficients. Visualizations - Visual data analysis techniques- interaction techniques	
	- Systems and applications.	12Hrs

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. Tom White "Hadoop: The Definitive Guide" Third Edition, O'reilly Media, 2012.
- 3. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGrawHill Publishing, 2012.
- 4. AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", CUP, 2012.
- 5. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley& sons, 2012.
- 6. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007.
- 7. Pete Warden, "Big Data Glossary", O'Reilly, 2011.

18PITEL102	Data Analytics Lab	(0-0-3) 2
-------------------	--------------------	-----------

Course Learning Objectives (CLO's):

Students will learn to Optimize business decisions and create competitive advantage with Big Data analytics and Imparting the architectural concepts of Hadoop and introducing map reduce paradigm and Introducing Java concepts required for developing map reduce programs and Derive business benefit from unstructured data and Introduce programming tools PIG & HIVE in Hadoop echo system.

Course Outcome (CO's):

Description of the Course Outcome(CO's): At the end of the course the student will be able to:		Mapping to POs(1 to 3)		
		Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Preparing for data summarization, query, and analysis.	1		
CO-2	Applying data modeling techniques to large data sets.		1	
CO-3	Creating applications for Big Data analytics.			2
CO-4	Building a complete business data analytic solution.		2	

POs	PO-1	PO-2	PO-3
Mapping Level	2.5	1.5	

Lab Exercises:

1	rform setting up and Installing Hadoop in its two operating modes:	2Hrs
2	n a basic Word Count Map Reduce program to understand Map ReduceParadigm.	2Hrs
3	Stop word elimination problem	2Hrs
	rite a Map Reduce program that mines weather data. Weather sensors collecting data every hour at many locations across the globe gather large volume of log data, which is a good candidate for analysis with MapReduce, since it is semi structured and record-oriented. Data available at: Instead of breaking the sales down by store, give us a sales breakdown by product category across all of our stores	4Hrs
5	tall and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your data.	2Hrs
6	rite a Pig Latin scripts for finding TF-IDF value for book dataset (A corpus of eBooks available	
	at: Project Gutenberg)	4Hrs

7	Install and Run Hive then use Hive to create, alter, and drop databases, tables, views, functions,	
	and indexes.	4Hrs
8	Install, Deploy & configure Apache Spark Cluster. Run apache spark applications using Scala.	2Hrs
9	Data analytics using Apache Spark on Amazon food dataset, find all the pairs of items	
	frequently reviewed together	4Hrs

18PITEE125	Agile Technology	(4-0-0) 4
		· /

Course Objectives:

To understand how an iterative, incremental development process leads to faster delivery of more useful software To understand the essence of agile development methods To understand the principles and practices of extreme programming To understand the roles of prototyping in the software process

To understand the concept of Mastering Agility

Course Outcome(CO's):

Description of the Course Outcome(CO's): At the end of the course the student will be able to:		Mapping to POs(1 to 3)		
		Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Analyse The XP Lifecycle, XP Concepts, Adopting XP	1		
CO-2	Work on Pair Programming, Root-Cause Analysis, Retrospectives, Planning, Incremental Requirements, Customer Tests	1		
СО-3	Implement Concepts to Eliminate Waste		2	

POs	PO-1	PO-2	PO-3
Mapping Level	1	2	

Pre-requisites: Software Engineering.

Contents:

1	Why Agile?: Understanding Success, Beyond Deadlines, The Importance of Organizational	
	Success, Enter Agility, How to Be Agile?: Agile Methods, Don't Make Your Own Method, The	
	Road to Mastery, Find a Mentor.	10Hrs.
2	Understanding XP: The XP Lifecycle, The XP Team, XP Concepts, Adopting XP: Is XP	
	Right for Us?, Go!, Assess Your Agility.	10 Hrs
3	Practicing XP: Thinking: Pair Programming, Energized Work, Informative Workspace, Root-	
	Cause Analysis, Retrospectives, Collaborating: Trust, Sit Together, Real Customer	
	Involvement, Ubiquitous Language, Stand-Up Meetings, Coding Standards, Iteration Demo,	
	Reporting, Releasing: "Done Done", No Bugs, Version Control, TenMinute Build, Continuous	
	Integration, Collective Code Ownership, Documentation, Planning: Vision, Release Planning,	
	The Planning Game, Risk Management, Iteration Planning, Slack, Stories, Estimating,	
	Developing: Incremental Requirements, Customer Tests, Test-Driven Development,	
	Refactoring, Simple Design, Incremental Design and Architecture, Spike Solutions,	12Hrs.
	Performance Optimization, Exploratory Testing.	
4	Mastering Agility: Values and Principles: Commonalities, About Values, Principles, and	
	Practices, Further Reading, Improve the Process: Understand Your Project, Tune and Adapt,	
	Break the Rules, Rely on People: Build Effective Relationships, Let the Right People Do the	
	Right Things, Build the Process for the People, Eliminate Waste: Work in Small, Reversible	
	Steps, Fail Fast, Maximize Work Not Done, Pursue Throughput	
		10Hrs
5	Deliver Value: Exploit Your Agility, Only Releasable Code Has Value, Deliver Business	
	Results, Deliver Frequently, Seek Technical Excellence: Software Doesn't Exist, Design Is for	
	Understanding, Design Trade-offs, Quality with a Name, Great Design, Universal Design	
	Principles, Principles in Practice, Pursue Mastery.	10Hrs

- 4) James shore, Chromatic, "The Art of Agile Development (Pragmatic guide to agile software development)", O'Reilly Media, Shroff Publishers & Distributors, 2013.
- 5) Robert C. Martin, "Agile Software Development, Principles, Patterns, and Practices", Prentice Hall; 1st edition, 2002
- 6) Craig Larman, "Agile and Iterative Development A Manger's Guide", Pearson Education, First Edition, India, 2004.

18PITEE126	Web services	(4-0-0) 4
------------	--------------	-----------

Course Objectives: This course will enable students to Define and explain WebServices, Summarize WSDL WebServices, Analyze Web serviceArchitecture, Explain Building Blocks of Webservices and Web Analytics approach

Description of the Course Outcome(CO's): At the end of the course the student will be able to:		Mapping to POs(1 to 3)				
		Substantial Level (3)	Moderate Level (2)	Slight Level (1)		
CO-1	Analyse Web service Architecture	1				
CO-2	Illustrate the Building Blocks of Web services and Web Analytics approach	1				
СО-3	Apply Web services as a Problem and a Solution		2			

POs	PO-1	PO-2	PO-3
Mapping Level	1	2	

Contents

1	Introduction: Middleware: Understanding the middle ware, RPC and Related Middle ware, TP	
	Monitors, Object Brokers, Message-Oriented Middleware.	10Hrs
2	Web Services: Web Services Technologies, Web Services Architecture.	10Hrs
2	Basic Web Services Technology: WSDL Web Services Description Language, UDDI	
	Universal Description Discovery and Integration, Web Services at work interactions between	
	the Specifications, Related Standards	10Hrs
3	Service Coordination Protocols: Infrastructure for Coordination Protocols, WS- Coordination,	
	WS-Transaction, Rosetta Net and Other Standards Related to Coordination Protocols	10Hrs
4	Service Composition: Basic of Service Composition, A New Chance of Success for	
	Composition, Services Composition Models, Dependencies between Coordination and	
	Composition, BPEL: Business Process Execution Language for Web Services, Outlook,	
	Applicability of the Web Services, Web services as a Problem and a Solution.	6Hrs
5	Introduction to Web Analytics: Web Analytics approaches, a model of analysis, pose the	
	questions, gather data, transform data, analyze the data. Case study.	6Hrs

- 1 Web Services(Concepts, Architectures and Applications), Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju, **Springer International Edition** 2009.
 - 2. Practical Web Analytics for User Experience: How Analytics can help you Understand your Users, Michael Beasley, Morgan Kaufmann, 2013

Course Learning Objectives: The objective of the course is to present an overview of artificial intelligence (AI) principles and approaches. Develop a basic understanding of the building blocks of AI as presented in terms of intelligent agents: Search, Knowledge representation, inference, logic, and learning

Course Outcome(CO's):

-	ion of the Course Outcome(CO's):	Mapping to POs(1 to 3)				
At the ento:	nd of the course the student will be able	Substantial Level (3)	Moderate Level (2)	Slight Level (1)		
CO-1	Describe concepts of AI and Intelligent agents.	1	2			
CO-2	Apply searching techniques for AI systems	2	2			
CO-3	Design the logic for knowledge representation and reasoning in AI based systems.	3	3			
CO-4	Formalize a given problem in the language/framework of different AI methods.	3	3			
CO-5	Analyze different learning algorithms in AI systems &Implement applications using different artificial intelligence concepts.	3	3			

POs	PO-1	PO-2	PO-3
MappingLevel	3	2.3	2.5

Pre-requisites: Statistics and Probability

Contents:

1	Introduction: What is AI? AI-Problem formulation, Problem Definition -Production systems						
	Control strategies, Search strategies. Problem characteristics, Production system						
	characteristics -Specialized productions system- Problem solving methods – Problem graphs,						
	matching	10Hrs.					
2	State space search:Depth first and Breath first, Indexing and Heuristic functions Heuristic						
	Search- Best First Search, Hill Climbing, Beam Search, Randomized Search: Simulated						
	Annealing, Genetic Algorithms, Ant Colony optimization, Constraints satisfaction – Related						
	algorithms, Measure of performance and analysis of search algorithms	10Hrs					
3	Representation of Knowledge - Game playing - Knowledge representation, Knowledge	10Hrs					

	representation using Predicate logic, Introduction to predicate calculus, Resolution, Use of	
	predicate calculus, Knowledge representation using other logic-Structured representation of	
	knowledge, Mini max Algorithm, AlphaBeta Algorithm	
4	Production based system, Frame based system. Inference – Backward chaining, Forward	
	chaining, Propositional Logic, First Order Logic, Soundness and Completeness Rule	
	value approach, Fuzzy reasoning - Certainty factors, Bayesian Theory-Bayesian Network-	
	Dempster – Shafer theory	10Hrs
5	Planning and Constraint Satisfaction: Domains, Forward and Backward Search, Goal Stack	
	Planning, Plan Space Planning, Graph plan, Constraint Propagation, Basic plan generation	
	systems – Strips -Advanced plan generation systems – K strips -Strategic explanations -Why,	
	Why not and how explanations. Learning- Machine learning, adaptive Learning	12Hrs

- 1. Deepak Khemani, A First Course in Artificial Intelligence, McGraw Hill Education (India), 2013.
- 2. Elaine Rich, Kevin Knight, Shiva Shankar B Nair, Artificial Intelligence, Tata McGraw Hill 3rd Edition, 2013.
- 3. Stefan Edelkamp and Stefan Schroedl. Heuristic Search: Theory and Applications, Morgan Kaufmann, 2011.
- 4. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall, 2009.
- 5. Pamela McCorduck, Machines Who Think: A Personal Inquiry into the History and Artificial Intelligence, A K Peters/CRC Press; 2nd Edition, 2004

PG-2019-20

SDM College of Engg.&Tech., Dharwad Scheme for M.Tech.(IT) Scheme of Teaching and Examination

I Semester M. Tech.

		Teaching		Examination					
Course Code	Course Title	L-T-P (Hrs/Week)		CIE	Theor	Theory (SEE)		Practical (SEE)	
			Credits	Max. Marks	*Max. Marks	Duration in hours	Max. Marks	Duration in hours	
18PITEC100	Big Data Analytics	4-0-0	4	50	100	3			
18PITEC101	Applied Mathematics	4-0-0	4	50	100	3			
18PITEEXXX	Elective 1	4-0-0	4	50	100	3			
18PITEEXXX	Elective 2	4-0-0	4	50	100	3			
18PITEEXXX	Elective 3	3-0-2	4	50	100	3			
18PITEL102	Data Analytics Lab	0-0-3	2	50			50	3	
18PITEL103	** Seminar	0-0-3	1	100					
	Total	19-0-8	23	400	500		50		

CIE: Continuous Internal Evaluation SEE: Semester End Examinations

L: Lecture T: Tutorials P: Practical

Elective List:

Course Code	Elective Courses	Course Code	Elective Courses
18PITEE125	Agile Technology	18PITEE128	Fuzzy System
18PITEE126	Web Services	18PITEE129	Artificial Intelligence
18PITEE127	Internet of things		

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks

^{**} Seminar is to be conducted every week and 2-3 students/week will present a topic from emerging areas in power systems preferably the contents not studied in their regular courses. The seminar shall be evaluated by 3 faculty members having specialization in power system and allied areas.

II Semester M. Tech.

		Teaching				Examina	tion	
Course Code	Course Title	L-T-P (Hrs/Wee	C 1:4-	CIE	Theory (SEE)		Practical (SEE)	
			Creans	Max.	*Max.	Duration	Max.	Duration
18PITEC200	Machine Learning	4-0-0	4	50	100	3		
18PITEC201	Natural Language Processing	3-0-2	4	50	100	3		
18PITEEXXX	Elective 4	4-0-0	4	50	100	3		
18PITEEXXX	Elective 5	4-0-0	4	50	100	3		
18PITEEXXX	Elective 6	4-0-0	4	50	100	3		
18PITEL202	Machine learning Lab	0-0-3	2	50			50	3
18PITEL203	** Seminar	0-0-3	1	100				
	Total	19-0-8	23	400	500		50	

CIE: Continuous Internal Evaluation SE

SEE: Semester End Examinations

L: Lecture

T: Tutorials

P: Practical

Elective List:

Course Code	Elective Courses	Course Code	Elective Courses
18PITEE225	Web Services	18PITEE228	Predictive Modeling
18PITEE226	Cloud Computing	18PITEE229	Optimization Technique
18PITEE227	Simulation and Modeling		

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks

^{* *} Seminar is to be conducted every week and 2-3 students/week will present a topic from emerging areas in power systems preferably the contents not studied in their regular courses. The seminar shall be evaluated by 3 faculty members having specialization in power system and allied areas.

SDM College of Engg.&Tech., Dharwad Scheme for M.Tech.(IT) Scheme of Teaching and Examination IIISemester M. Tech.

		Teaching	Teaching		Examination				
Course Code	Course Title	L-T-P-S		CIE	Theory	Theory (SEE)		Practical (SEE)	
		(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration	
		(III S/ W CCK)		Marks	Marks	in hours	Marks	in hours	
18PITEC300	Computer Vision	4-0-0	4	50	100	3			
18PITEEXX	Elective 7	4-0-0	4	50	100	3			
18PITELXXX	Internship in	** Min 4	3	50/50	100	3	50	3	
	Industry/R&D	weeks during							
	organization/	vacation after							
	Elective 8	2 nd sem/							
		3-0-0							
18PITEL302	*** Project Phase 1	0-0-15	9	50			50	3	
Total		8/11-0-15	20	200	200/300		100		

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

** The students are expected to undergo training in industry for a period of *four weeks* during the vacation immediately after completion of II Semester examination. A faculty is to be allotted to guide the student. A committee consisting of three faculty members shall evaluate the work carried out and the knowledge the students have acquired. **OR The students can take one elective course if they do not undergo internship.**

Project phase-I: The students are expected to formulate the problem and carry out the intensive literature survey along with preliminary investigations supporting the project phase-II in IV semester

Elective 7 Elective 8

Course code	Elective Courses
18PITEE325	Modern Cryptography
18PITEE326	Deep Learning
18PITEE327	Knowledge Discovery

Course code	Elective Courses
18PITEE335	Pattern Recognition
18PITEE336	Distributed Computing
18PITEE337	Bio Informatics

IV Semester M. Tech.

		Teaching		Examination								
Course	Course Title	TTDC		CIE	Theory (SEE)		Practical (SEE)					
Code		(Hrs/Week)					Credits	Max.	*Max.	Duration	Max.	Duration
				Marks	Marks	in hours	Marks	in hours				
18PITEL400	Project phase-II	0-0-20	22	100	-	-	100	3				
	Total	0-0-20	22	100	-		100					

CIE: Continuous Internal Evaluation SEE: Semester End Examination

L: Lecture T: Tutorials P: Practical

** Project phase-II: The students are expected to work on a project for the full semester in an industry or an institution

*

Dr. Jagadeesh D. Pujari HOD, ISE

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

PG-2020-21 Scheme of Teaching and Examination I Semester

		Teaching		Examination					
Course Code	Course Title	L-T-P		CIE	Theo	ry (SEE)	Practi	cal (SEE)	
Course Coue	Course Title	(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration	
		(IIIs/ Week)		Marks	Marks	in hours	Marks	in hours	
20PRMIC100	Research								
	Methodology and	2-0-0	2	50	50	2			
	IPR								
20PITC100	Data Analytics	4-0-0	4	50	100	3			
20PITC101	Distributed								
	Computing	4-0-0	4	50	100	3			
	Systems								
20PITC102	Artificial	4-0-0	4	50	100	3			
	Intelligence	4-0-0	4	30	100	3			
20PITEXXX	Elective 1	4-0-0	4	50	100	3			
20PITL103	Data Analytics	0-0-3	2	50			50	3	
	Lab	0-0-3	<i>L</i>	30			30	3	
20PITL104	Seminar	0-0-2	1	50					
Г	Total	18-0-5	21	350	450		50		

CIE: Continuous Internal Evaluation

SEE: Semester End Examination

L: Lecture

T: Tutorials

P: Practical

Seminar is to be conducted every week and 2-3 students/week will present a topic from emerging areas in respective PG program preferably the contents not studied in their regular courses. The seminar shall be evaluated by 3 faculty members having specialization in respective program and allied areas.

Electives for I Semester:

Course Code	Elective 1 Courses
20PITE125	Agile Technology
20PITE126	Cloud Computing
20PITE127	Storage Technologies

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

Scheme of Teaching and Examination II Semester M. Tech.

		Teach	ing	Examination					
Course	Course Title	L-T-P		CIE	Theor	Theory (SEE)		Practical (SEE)	
Code		(Hrs/Week)	Credits	Max. Marks	*Max. Marks	Duration in hours	Max. Marks	Duration in hours	
20PITC200	Machine and Deep Learning	4-0-0	4	50	100	3			
20PITC201	Internet of Things	3-2-0	4	50	100	3			
20PITEXXX	Elective 2	3-0-2	4	50	100	3			
20PITEXXX	Elective 3	4-0-0	4	50	100	3			
20PITEXXX	Elective 4	3-0-2	4	50	100	3			
20PITL202	Machine Learning Lab	0-0-3	2	50			50	3	
20PITL203	Seminar	0-0-2	1	50					
	Total		23	350	500		50		

CIE: Continuous Internal Evaluation

SEE: Semester End Examination

L: Lecture

T: Tutorials

P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

Seminar is to be conducted every week and 2-3 students/week will present a topic from emerging areas in respective PG program preferably the contents not studied in their regular courses. The seminar shall be evaluated by 3 faculty members having specialization in respective program and allied areas.

Electives for II Semester:

Course	Elective 2 Courses	Course	Elective 3 Courses	Course	Elective 4 Courses
Code		Code		Code	
20PITE225	Data Science	20PITE228	Virtual reality	20PITE231	Advanced Computer
					Graphics
20PITE226	Client-server	20PITE229	Parallel Computing	20PITE232	User Interface
	Programming				Design
20PITE227	Network	20PITE230	Mobile Adhoc &	20PITE233	Pervasive computing
	Engineering		sensor network		

Scheme of Teaching and Examination III Semester M. Tech.

		Teachi	ng	Examination				
Course	Course	L-T-P		CIE	Theor	ry (SEE)	Praction	cal (SEE)
Code	Title	(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration
		(HIS/WEEK)		Marks	Marks	in hours	Marks	in hours
20PITC300	Web Services	4-0-0	4	50	100	3		
20PITEXXX	Elective 5	3-0-0	3	50	100	3		
20PITEXXX	Elective 6	3-0-0	3	50	100	3		
20PITEXXX	Elective 7	3-0-0	3	50	100	3		
			(OR				
20PITL301	Internship in Industry or R&D organizatio n	** Min 4 weeks during vacation after 2 nd sem	3	50			100	3
20PITL302	*** Project phase 1	0-0-15	9	50			50	3
То	tal	13-0- 15/10- 4weeks- 15)	22	250	400/ 300		50/150	

CIE: Continuous Internal Evaluation SEE: Semester End Examination

L: Lecture T: Tutorials P: Practical

^{*}SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

^{**} The students are expected to undergo training in industry for a period of *four weeks* during the vacation immediately after completion of II Semester examination. A faculty is to be allotted to guide the student. A committee consisting of three faculty members shall evaluate the work carried out and the knowledge the students have acquired. OR The students can take one elective course if they do not undergo internship.

^{***}Project phase-I: The students are expected to formulate the problem and carry out the intensive literature survey along with preliminary investigations supporting the project phase-II in IV semester.

Electives for III Semester:

Course	Elective 5	Course	Elective 6	Course Code	Elective 7
Code	Courses	Code	Courses		Courses
20PITE325	Computer Vision	20PITE328	Natural Language	20PITE331	Modern
			Processing		Cryptography
20PITE326	Semantic Web	20PITE329	Enterprise	20PITE322	Bio Informatics
	and Social		Application		
	Network		Programming		

Scheme of Teaching and Examination IV Semester M. Tech.

		Teaching		Examination				
Course	Course Title	L-T-P		CIE	Theo	ry (SEE)	Practi	cal (SEE)
Code	Course Title	(Hrs/Week)	Credits	Max. Marks	*Max. Marks	Duration in hours	Max. Marks	Duration in hours
20PITL400	Project phase-	0-0-20	22	100			100	3
Т	'otal	0-0-20	22	100			100	

CIE: Continuous Internal Evaluation SEE: Semester End Examination

L: Lecture T: Tutorials P: Practical

Dr. Jagadeesh D. Pujari HOD, ISE

^{*}SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

^{**} Project phase-II: The students are expected to work on a project for the full semester in an industry or an institution

Course Learning Objectives (CLO's): Cloud computing helps organizations realize cost savings and efficiencies without spending capital resources up front, while modernizing and expanding their IT capabilities.

Course Outcomes (CO's):

_	tion of the Course Outcome:	Марр	ping to POs(1-4	4)	
At the er	nd of the course the student will be able to:	Substantial	Moderate	Slight	
		Level (3)	Level (2)	Level (1)	
	Compare and Contrast the various cloud service				
CO-1	models, cloud delivery models, key cloud	1			
CO-1	characteristics, roles and boundaries and important	1	_	-	
	terminology				
CO-2	Explain how virtualization technology has enabled		2		
CO-2	cloud computing.	-	2		
	Demonstrate how various cloud providers such as				
CO-3	AWS, Google Compute and Microsoft Azure	-	3	-	
	implement and offer IaaS, PaaS and SaaS services.				
	Develop, deploy, manage and scale applications				
CO-4	running in platforms such as Java /Python Platform	-	3	-	
	(PaaS).				
	Describe how cloud can be used to perform Big				
CO-5	Data Analytics using distributed computing	-	3	-	
	technologies like Hadoop.				

POs	PO-1	PO-2	PO-3	PO-4
Mapping Level	3.0	2.0	2.0	-

Pre-requisites: Computer Networks

Contents:

- 1) Introduction: Cloud Infrastructure Cloud computing, Cloud computing delivery models and services, Ethical issues, Cloud vulnerabilities, Cloud computing at Amazon, Cloud computing the Google perspective, Microsoft Windows Azure and online services, Open-source software platforms for private clouds, Cloud storage diversity and vendor lock-in, Energy use and ecological impact, Service level agreements, Exercises Self learning component:-. User experience and software licensing 10Hrs
- 2) **Cloud Computing**: Application Paradigms. Challenges of cloud computing, Architectural styles of cloud computing, Workflows: Coordination of multiple activities, Coordination based on a state machine model: The Zookeeper, The Map Reduce programming model, A case study: The Grep, The Web application, Cloud for science and engineering, High-performance computing on a cloud, SLC: Cloud computing for Biology research, Social computing **9Hrs**

- 3) Cloud Resource Virtualization: Virtualization, Layering and virtualization, Virtual machine monitors, Virtual Machines, Performance and Security Isolation, Full virtualization and par a virtualization, Hardware support for virtualization, Case Study: Xen a VMM based para virtualization, Optimization of network virtualization, vBlades, Performance comparison of virtual machines, Exercises and problems 8Hrs
- 4) Cloud Resource Management and Scheduling: Policies and mechanisms for resource management, Application of control theory to task scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback control based on dynamic thresholds, Coordination of specialized autonomic performance managers, A utility-based model for cloud-based Web services, Resourcing bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines 8Hrs
- 5) **Python for Cloud**: Python for Amazon Web Services, Python for Google Cloud Platform, Python for Windows Azure, Python for MapReduce, Python Packages of Interest, Python Web Application Framework Django, Designing a RESTful Web API **Cloud Application Development in Python**: Design Approaches, Image Processing App, Document Storage App, MapReduce App, Social Media Analytics App **8Hrs**
- 6) **Comparing Cloud Platforms**: AWS (Amazon Web Services), GCP (Google Cloud Platform), IBM Cloud, Salesforce.
 - **Cloud Native and Emergent Cloud Trends:** Hybrid Multicloud, Serverless, Microservices, Cloud Native, DevOps, Application Modernization **9Hrs**

- 1) Arshdeep Bahga and Vijay Madisetti "Cloud Computing: A Hands-On Approach", Universities Press India, 2014.
- 2) Dan C. Marinescu "Cloud Computing and Practice", 1/e, Elsevier (MK), 2013.
- 3) Rajkumar Buyya, Christian Vecchiola, S.Thamarai Selvi, "Mastering Cloud".
- 4) Morgan Kaufmann "Computing Foundations and Applications Programming", 2/e, 2013.
- 5) Anthony. Velte, "Cloud Computing A Practical Approach", 1/e, McGraw Hill, 2010.
- 6) Tom White, "Hadoop: The Definitive", 3/e, O'Reilly, 2013.

Course Learning Objectives (CLO's): To help the students: To outline basic terminology and components in information storage and retrieval systems, to compare and contrast information retrieval models and internal mechanisms such as Boolean, Probability, and Vector Space Model, to describe current trends in information retrieval such as information visualization. To understand a backup process and securing and managing storage infrastructure

Course Outcome (CO's):

_	tion of the Course Outcome: and of the course the student will be able to:	Mapping to POs(1-4)		
		Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Illustrate the role and use of technology in business systems and operations	1	-	-
CO-2	Identify and describe organizational structure and business processes within these.	1	-	-
CO-3	Develop an understanding of network engineering principles for network, system and service management.	-	2	-
CO-4	Implement information systems in industry	-	2	-
CO-5	Discuss the method and replication methods.	2	-	4

POs	PO-1	PO-2	PO-3	PO-4
Mapping Level	3.0	1.3		1

Pre-requisites: Computer Network

Contents:

- 1) Introduction to Information Storage: Information Storage, Evolution of Storage Architecture, Data center Infrastructure, Virtualization and cloud computing. Data Center Environment: Application, Database Management System(DBMS), Host(compute), Connectivity, Storage, Disk Drive Components, Disk Drive Performance, Host Access to Data, Direct-Attached Storage, Storage Design Based On Application, Disk Native Command Queuing, Introduction to Flash Drives, Concept in Practice: VMware ESXi. Data Protection: RAID: RAID Implementation Methods, RAID Array Components, RAID Techniques, RAID levels, RAID Impact on Disk Performance, RAID Comparison, Hot Spares, Case Study.
- 2) Intelligent Storage Systems: Components of an Intelligent Storage System, Storage Provisioning, Types of intelligent Storage Systems, Concepts in Practice: EMC Symmetrix and VNX. Fibre Channel Storage AreaNetworks: Fibre Channel: Overview, The SAN and Its Evolution, Components of FC SAN, FC Connectivity, Switched Fabric Ports, Fibre Channel Architecture, fabric Services, Switched fabric Login Types, Zoning, FC SAN Topologies, Virtualization in SAN, Concepts in Practice: EMC Connectrix and EMC VPLEX.IP SAN and FcoE: iSCSI, FCIP, FcoE. 10 Hrs.
- 3) Network-Attached Storage: General-purpose Servers versus NAS Devices, benefits of NAS, File Systems and network File Sharing. Components of NAS, NAS I/O Operation, NAS Implementations, NAS File-Sharing Protocols, factors Affecting NAS Performance, File-Level Virtualization, Concepts in Practice: EMC Isilon and EMC VNX gateway. 10 Hrs.
- 4) Backup and Archive: Backup Purpose, Backup Considerations, Backup Granularity, Recovery Considerations, Backup Methods, Backup Architecture, Backup and Restore Operation, Backup Topologies, Backup in NAS Environments, Backup Targets, Data Dedupulication for Backup, Backup in Virtualized Environments, Data Archive, Archiving Solution Architecture, Concepts in Practice: EMC Networker, EMC Avamar, and EMC Data domain. Local Relication: Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication in Virtualized Environment, Concepts in Practice: EMC TimeFinder. 10 Hrs
- 5) Securing the Storage Infrastructure: Information Security Framework, Risk Triad, Storage SecurityDomains, Security implementations in Storage Networking, Securing Storage Infrastructure in Virtualized and Cloud Environments, Concepts in practice: RSA and VMware Security Products. Case Study.
 12 Hrs

- 1) EMC²: Information Storage and Management, Willey India 2013.
- 2) EMC Corporation, Information Storage and Management, Wiley, India. ISBN-13: 978-8126537501, August 2012.
- 3) Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, Osborne, 2003.
- 4) Marc Farley, "Building Storage Networks", Tata M cGraw Hill, Osborne, 2001.
- 5) Additional resource material on www.emc.com/resource-library/resource-library.esp.

Course Learning Objectives: This course considers at the Internet of Things (IoT) as the general theme of real-world things becoming increasingly visible and actionable via Internet and Web technologies. The goal of the course is to take a top-down as well as a bottom-up approach, thereby providing students with a comprehensive Analysis of the IoT: from a technical viewpoint as well as considering the societal and economic impact of the IoT.

Course Outcomes:

		Mapping to POs (1-4)					
-	end of the course the student will be able to:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)			
CO-1	Illustrate portable IoT applications using Arduino/ Raspberry Pi.	2	-	-			
CO-2	Develop web services to access and control IoT devices.	3	-	-			
CO-3	Deploy an IoT application and connect to the cloud.	-	3	-			
CO-4	Analyze IoT applications data.	2	-	-			

POs	PO-1	PO-2	PO-3	PO-4
Mapping Level	-	3.0	2.5	-

Pre-requisites: Computer Networks

Contents:

- Introduction: Introduction to Internet of Things (IoT): IoT overview, Physical and Logical design of IoT, IoT Enabling Technologies, IoT levels, Domain Specific IoTs: Home Automation, Smart Cities, Smart Environment, Smart Energy, Smart Retail, Smart Logistics, Smart Agriculture, Smart Industry, Smart Health.
 7 Hrs.
- 2. Data-Link Layer and Networking Layer Protocols for Internet of Things: Recent Protocols for IoT, L2 Protocols for IoT, Power Line Communication (PLC), Broadband Over Power Lines (BPL), OFDM, Home Plug, Connected Home, Convergent Digital Home Network, IEEE 1905.1, Netricity, Field bus, Industrial Ethernet, IEEE 1451, Smart Cards, IoT Ecosystem, IEEE 802.15.4,EUI64 Addresses, 6LowPAN, IP+UDP Header Compression: Stateless, Context Based Compression, Routing Protocol for Low-Power and Lossy Networks (RPL), IPv6 Technologies for the IoT, MQTT, 6LoWPAN.
- **3. IoT and M2M:** Introduction, M2M, Difference between IoT and M2M, Introduction to Software Defined Networking (SDN), SDN for IoT and Network Function Virtualization (NFV) for IoT, Cloud Computing, Sensor-Cloud, Fog Computing, **7 Hrs.**
- **4. IoT Systems Logical Design using Python:** Introduction, Python Data Types & Data Structures, Control Flow, Functions, Modules, Packages, File Handling, Classes, Python Packages of Interest for IoT **5 Hrs.**

- **5. Tools for IoT and case studies:** Introduction, NETCONF, YANG, YIN and BEEP, Case Studies illustrating IoT Design-Introduction, Home and Agriculture Automation **4 Hrs.**
- **6. Data Analytics for IoT:** Introduction, Apache Hadoop, Using Hadoop MapReduce for Batch Data Analysis, Apache Oozie, Apache Spark, Apache Storm, Using Apache Storm for Real-time Data Analysis, Data Handling and Analytics **7 Hrs.**
- 7. Semester Project using Arduino and Raspberry Pi:

20Hrs

- a) Project Design Meeting.
- b) Project Plan (timeline, assignment of tasks, etc.)
- c) Introduction & Overview of Projects
- d) Project Implementation Strategy Meeting
- e) User Interfaces and Application Examples
- f) Project Progress Demo -1, 2, 3, 4, 5
- g) Final Project Demo

Beyond the Syllabus Coverage (Suggestive):

- 1. Students' Survey papers related to IoT
- 2. Laboratory Experiments
- 3. Seminar

- 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands on Approach" Universities Press., 2015
- 2. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", Wiley, 2013
- 3. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", 2017 CRC Press)
- 4. Michael Miller," The Internet of Things", First Edition, Pearson, 2015.
- 5. Claire Rowland, Elizabeth Goodman et.al.," Designing Connected Products", First Edition, O'Reilly, 2015
- 6. Samuel Greengard, The Internet of Things, MIT Press, 2015
- 7. H. Zhou, "The Internet of Things in the Cloud: A Middleware Perspective," CRC Press, 2012, ISBN:1439892997
- 8. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.
- 9. Manoel Carlos Ramon, "Intel Galileo and Intel Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.
- 10. Internet of Things courses from www.edx.orgwww.coursera.orgwww.nptel.ac.in

Course Learning Objectives (CLOs): This course will enable students to Define data science and its fundamentals, Demonstrate the process in data science, Explain machine learning algorithms necessary for data sciences, Illustrate the process of feature selection and analysis of data analysis algorithms and Visualize the data and follow of ethics

Course Outcomes (COs):

Description	n of the Course Outcome:	Mapping to POs(1-4)					
_	of the course the student will be able to:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)			
CO-1	Define data science and its fundamentals	-	-	4			
CO-2	Demonstrate the process in data science	-	3	-			
CO-3	Explain machine learning algorithms necessary for data sciences	-	-	-			
CO-4	Illustrate the process of feature selection and analysis of data analysis algorithms	-	2	-			
CO-5	Visualize the data and follow of ethics	1	-	-			

POs	PO-1	PO-2	PO-3	PO-4
Mapping Level	3	2	2	1

Prerequisites: 1) Database Management Systems

Contents:

- 1) Introduction: What is Data Science? Big Data and Data Science hype and getting past the hype, Why now? Datafication, Current landscape of perspectives, Skill sets. NeededStatistical Inference: Populations and samples, Statistical modeling, probability distributions, fitting a model, Introduction to R 12Hrs
- 2) Exploratory Data Analysis and the Data Science Process: Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA, The Data Science Process, Case Study: RealDirect (online real estate firm). Three Basic Machine Learning Algorithms: Linear Regression, kNearest Neighbors (k-NN), k-means 10Hrs
- 3) One More Machine Learning Algorithm and Usage in Applications: Motivating application: Filtering Spam, Why Linear Regression and k-NN are poor choices for Filtering Spam, Naive Bayes and why it works for Filtering Spam, Data Wrangling: APIs and other tools for scrapping the Web **10Hrs**
- 4) Feature Generation and Feature Selection (Extracting Meaning From Data): Motivating application: user (customer) retention. Feature Generation (brainstorming, role of domain expertise, and place for imagination), Feature Selection algorithms. Filters; Wrappers; Decision Trees; Random Forests. Recommendation Systems: Building a User-Facing Data Product, Algorithmic ingredients of a Recommendation Engine, Dimensionality Reduction, Singular Value Decomposition, Principal Component Analysis, Exercise: build your own recommendation system

 10Hrs

5) Mining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs, Data Visualization: Basic principles, ideas and tools for data visualization. Data Science and Ethical Issues, Discussions on privacy, security, ethics, Next-generation data scientists

10Hrs

- 1. Doing Data Science Cathy O'Neil and Rachel Schutt Straight Talk From The Frontline.O'Reilly 2014.
- 2. Mining of Massive Datasets. v2.1 Jure Leskovek, Anand Rajaraman and Jeffrey Ullman Cambridge University Press 2014 .
- 3. Machine Learning: A Probabilistic Perspective Kevin P. Murphy 2013.
- 4. Data Mining: Concepts and Techniques Jiawei Han, Micheline Kamber and Jian Pei Third Edition 2012.

PG-2021-22 Scheme of Teaching and Examination I Semester

		Teaching		Examination				
Course	Course Title	L-T-P (Hrs/Week)		CIE	Theor	ry (SEE)	Praction	cal (SEE)
Code	Course True		Max.	*Max.	Duration	Max.	Duration	
		(IIIS/ WEEK)		Marks	Marks	in hours	Marks	in hours
20PRMIC100	Research							
	Methodology	2-0-0	2	50	50	2		
	and IPR							
20PITC100	Data Analytics	4-0-0	4	50	100	3		
20PITC101	Distributed							
	Computing	4-0-0	4	50	100	3		
	Systems							
20PITC102	Artificial	4-0-0	4	50	100	3		
	Intelligence	4-0-0	4	30	100	3		
20PITEXXX	Elective 1	4-0-0	4	50	100	3		
20PITL103	Data Analytics	0-0-3	2	50			50	3
	Lab	0-0-3	<i>L</i>	30			30	3
20PITL104	Seminar	0-0-2	1	50				
	Total		21	350	450		50	

CIE: Continuous Internal Evaluation **SEE**: Semester End Examination

L: Lecture T: Tutorials P: Practical

Seminar is to be conducted every week and 2-3 students/week will present a topic from emerging areas in respective PG program preferably the contents not studied in their regular courses. The seminar shall be evaluated by 3 faculty members having specialization in respective program and allied areas.

Electives for I Semester:

Course Code	Elective 1 Courses
20PITE125	Agile Technology
20PITE126	Cloud Computing
20PITE127	Storage Technologies

^{*} SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

Scheme of Teaching and Examination II Semester M. Tech.

		Teaching		Examination				
Course	Course Course			CIE	Theo	ry (SEE)	Practical (SEE)	
Code	Title	L-T-P (Hrs/Week)	Credits	Max. Marks	*Max. Marks	Duration in hours	Max. Marks	Duration in hours
20PITC200	Machine and Deep Learnin g	4-0-0	4	50	100	3		
20PITC201	Internet of Things	3-2-0	4	50	100	3		
20PITEXXX	Elective 2	3-0-2	4	50	100	3		
20PITEXXX	Elective 3	4-0-0	4	50	100	3		
20PITEXXX	Elective 4	3-0-2	4	50	100	3		
20PITL202	Machine Learnin g Lab	0-0-3	2	50			50	3
20PITL203	Seminar	0-0-2	1	50				
Tot	al	17-2-9	23	350	500		50	

CIE: Continuous Internal Evaluation

SEE: Semester End Examination

L: Lecture

T: Tutorials

P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

Seminar is to be conducted every week and 2-3 students/week will present a topic from emerging areas in respective PG program preferably the contents not studied in their regular courses. The seminar shall be evaluated by 3 faculty members having specialization in respective program and allied areas.

Electives for II Semester:

Course	Elective 2 Courses	Course	Elective 3 Courses	Course	Elective 4 Courses
Code		Code		Code	
20PITE225	Data Science	20PITE228	Virtual reality	20PITE231	Advanced Computer
					Graphics
20PITE226	Client-server	20PITE229	Parallel Computing	20PITE232	User Interface
	Programming				Design
20PITE227	Network	20PITE230	Mobile Adhoc &	20PITE233	Pervasive computing
	Engineering		sensor network		

Scheme of Teaching and Examination III Semester M. Tech.

		Teaching Examination				on			
Course	Course	L-T-P		CIE	Theor	y (SEE)	Praction	cal (SEE)	
Code	Title		Credits	Max.	*Max.	Duration	Max.	Duration	
		(Hrs/Week)		Marks	Marks	in hours	Marks	in hours	
20PITC300	Web Services	4-0-0	4	50	100	3			
20PITEXXX	Elective 5	3-0-0	3	50	100	3			
20PITEXXX	Elective 6	3-0-0	3	50	100	3			
20PITEXXX	Elective 7	3-0-0	3	50	100	3			
OR									
20PITL301	Internship in Industry or R&D organizatio n	** Min 4 weeks during vacation after 2 nd sem	3	50			100	3	
20PITL302	*** Project phase 1	0-0-15	9	50			50	3	
To	tal	13-0- 15/10- 4weeks- 15)	22	250	400/ 300		50/150		

CIE: Continuous Internal Evaluation SEE: Semester End Examination

L: Lecture

T: Tutorials

P: Practical

^{*}SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

^{**} The students are expected to undergo training in industry for a period of *four weeks* during the vacation immediately after completion of II Semester examination. A faculty is to be allotted to guide the student. A committee consisting of three faculty members shall evaluate the work carried out and the knowledge the students have acquired. OR The students can take one elective course if they do not undergo internship.

^{***}Project phase-I: The students are expected to formulate the problem and carry out the intensive literature survey along with preliminary investigations supporting the project phase-II in IV semester.

Electives for III Semester:

Course	Elective 5	Course	Elective 6	Course	Elective 7	
Code	Courses	Code	Courses	Code	Courses	
20PITE325	Computer	20PITE328	Natural	20PITE331	Modern	
	Vision		Language		Cryptography	
			Processing			
20PITE326	Semantic Web	20PITE329	Enterprise	20PITE322	Bio Informatics	
	and Social		Application			
	Network		Programming			
20PITE327	Cyber Crime	20PITE330	Block Chain	20PITE333	Data	
	and Cyber		Management		Compression	
	Forensics					

Scheme of Teaching and Examination IV Semester M. Tech.

	Course Title	Teaching		Examination				
Course Code		L-T-P (Hrs/Week)	Credits	CIE	Theory (SEE)		Practical (SEE)	
				Max. Marks	*Max. Marks	Duration in hours	Max. Marks	Duration in hours
20PITL400	Project phase-II	0-0-20	22	100		-1	100	3
Total		0-0-20	22	100			100	

CIE: Continuous Internal Evaluation SEE: Semester End Examination

L: Lecture

T: Tutorials

P: Practical

*SEE for theory courses is conducted for 100 marks and reduced to 50 marks.

** Project phase-II: The students are expected to work on a project for the full semester in an industry or an institution

Dr. Jagadeesh D. Pujari HOD, ISE