SDM College of Engineering and Technology, Dharwad – 580002

Department of Computer Science and Engineering

2018 Scheme

I/II semester B. E. (Common to all Branches)

			Teachi	ng			Examinatio	n	
Course	Course	Course Title	ІТР		CIE	Theo	ry (SEE)	Practical (SEE)	
Code	Cotegory	Course The	(Hrs/Week) Credits M		Max.	*Max.	Duration	Max.	Duration
	Category		(1115/ WEEK)		Marks	Marks	in Hrs.	Marks	In Hrs.
18UMAC100	BS	Engineering Mathematics-I	3 - 2 - 0	4	50	100	3	-	-
18UPHC100	BS	Engineering Physics	3 - 2 - 0	4	50	100	3	-	-
18UEEC100	ES	Basic Electrical Engineering	3 - 0 - 0	3	50	100	3	-	-
18UCVC100	ES	Engineering Mechanics	3 - 0 - 0	3	50	100	3	-	-
18UMEC100	ES	Elements of Mechanical	2 - 0 - 0	2	50	50	2	-	-
		Engineering							
18UPHL100	BS	Engineering Physics Lab	0 - 0 - 2	1	50			50	3
18UESL100	ES	Basic Engineering Skills Lab	0 - 0 - 2	1	50			50	3
18UHUC100	HU	Kannada	2-0-0	1	50	50	2		
18UHUA100	HU	Constitution of India &	2-0-0	Audit	100				
		Professional Ethics							
]	Total	18 - 4 - 4	19	500	500		100	

Physics cycle

			Teachi	ng			Examinatio	n	
Course Code	Course	Course Title	ГТР		CIE	Theo	ry (SEE)	Practical (SEE)	
Course Coue	Category	Course The	(Hrs/Week)	Credits	Max.	*Max.	Duration	Max.	Duration
			(IIIS/ WEEK)		Marks	Marks	in Hrs.	Marks	In Hrs.
18UMAC100	BS	Engineering Mathematics-I	3 - 2 - 0	4	50	100	3		
18UCYC100	BS	Engineering Chemistry	3 - 2 - 0	4	50	100	3		
18UECC100	ES	Basic Electronics	3 - 0 - 0	3	50	100	3		
18UCSC100	ES	Problem Solving &	3 - 2 - 0	4	50	100	3		
		Programming in C							
18UMGC100	ES	Engineering Graphics	2 - 0 - 2	3	50	100	3		
18UCYL100	BS	Engineering Chemistry Lab	0 - 0 - 2	1	50			50	3
18UCSL100	ES	Problem Solving &	0 - 0 - 2	1	50			50	3
		Programming in C Lab							
18UHUC101	HU	Functional English	2 - 0 -0	1	50	50	2		
18UHUA102	HU	Environmental Science	2 - 0 - 0	Audit	100				
Total			18 - 6 - 6	21	500	550		100	

III Semester

			Teach	ing			Examinati	on	
			ТТР		CIE	Theo	ry (SEE)	Practical (SEE)	
Course Code	Course Category	Course Title	(Hrs/Wee k)	Credit s	Max. Mark s	*Max. Mark s	Duratio n in Hrs.	Max. Mark s	Duration In Hrs.
18UMAC300	BS	Engg. Mathematics-III	3-0-0	3	50	100	3	-	-
18UCSC300	PC	Digital Electronics	4-0-0	4	50	100	3	-	-
18UCSC301	PC	Discrete Structures in Computer Science	3-2-0	4	50	100	3	-	-
18UCSC302	PC	Data Structures and Applications	4-0-0	4	50	100	3	-	-
18UCSC303	PC	Computer Organization and Architecture	3-0-0	3	50	100	3		
18UCSC304	PC	Introduction to Unix Operating Systems	2-0-2	3	50	100	3		
18UCSL305	PC	Digital Electronics Laboratory	0-0-3	1.5	50			50	3
18UCSL306	PC	Data Structures and Applications Laboratory	0-0-3	1.5	50			50	3
Total			19-2-8	24	400	600	-	100	-

IV Semester

			Teachi	ng			Examinati	on	
					CIE	Theo	ry (SEE) Practical		cal (SEE)
Course Code	Course Category	Course Title	L-T-P (Hrs/Week)		Max. Mark s	*Max. Mark s	Duratio n in Hrs.	Max. Mark s	Duration In Hrs.
18UMAC400	BS	Engineering Mathematics-IV	3-0-0	3	50	100	3	-	-
18UCSC400	PC	ARM Processor	3-0-0	3	50	100	3	-	-
18UCSC401	PC	Finite Automata and Formal Languages	3-0-0	3	50	100	3	-	-
18UCSC402	PC	Object Oriented Programming	4-0-0	4	50	100	3	-	-
18UCSC403	PC	Analysis and Design of Algorithms	3-0-2	4	50	100	3	-	-
18UCSC404	PC	Operating Systems	4-0-0	4	50	100	3	-	-
18UCSL405	PC	Object Oriented Programming Lab	0-0-3	1.5	50		-	50	3
18UCSL406	PC	ARM Processor Lab	0- 0-3	1.5	50		-	50	3
18UCSL407	PC	Introductory Project	0-0-2	1	50				
	Total		20-0-10	25	450	600		100	

V Semester

			Teachi	ng			Examinati	on	
					CIE	Theo	ry (SEE)	Practi	cal (SEE)
Course Code	Course Category	Course Title	L-T-P (Hrs/Week)	Credits	Max. Mark s	*Max. Mark s	Duratio n in Hrs.	Max. Mark s	Duration In Hrs.
18UHUC500	HU	Management, Entrepreneurship and IPR	4-0-0	4	50	100	3	-	-
18UCSC500	PC	Data Communication4-0-04		50	100	3	-	-	
18UCSC501	PC	Database Management Systems	4-0-0	4	50	100	3	-	-
18UCSC502	PC	Compiler Design and System Software	3-0-0	3	50	100	3	-	-
18UCSC503	PC	Software Engineering 3-0-0		3	50	100	3		
18UCSL504	PC	Database Management Systems Lab	0-0-3	1.5	50			50	3
18UCSL505	PC	Compiler Design and System Software Lab	0-0-3	1.5	50			50	3
18UCSL506	PC	Minor Project-1	0-0-2	1	50				
18UHUL507	HU	Soft skills/Aptitude	0-0-2	1	50				
		Elective Courses (One	elective is to be	chosen by t	he studen	its)	•		·
18UCSE508	PE	Advanced Object Oriented Programming	3-0-0	3	50	100	3	-	-
18UCSE509	PE	System Simulation and Modeling	3-0-0	3	50	100	3	_	-
18UCSE510	PE	Advanced Graph Theory	3-0-0 3		50	100	3	-	-
	Tota	al	21-0-10	26	500	600		100	

VI Semester

			Teachi	ng			Examinati	on	
	Course				CIE	Theo	ry (SEE)	Practi	cal (SEE)
Course Code	Categor y	Course Title	L-T-P (Hrs/Week)	Credits	Max. Mark s	*Max. Mark s	Duratio n in Hrs.	Max. Mark s	Duration In Hrs.
18UCSC600	PC	Computer Networks	4-0-0	4	50	100	3	-	-
18UCSC601	PC	Object Oriented System Modeling and Design	4-0-0	4	50	100	3	-	-
18UCSL602	PC	Computer Networks Lab	0-0-3	1.5	50	-	-	50	3
18UCSL603	PC	Industry Oriented Programming Practices Lab	0-0-3	1.5	50	-	-	50	3
18UCSL604	PC	Minor Project-2	0-0-4	2	50	-	-	50	3
18UHUL605	HU	Soft skills/Aptitude	0-0-2	1	50	-	-	-	-
	Elective (Courses (Two Program Elective	s and One Open	Elective ar	e to be ch	osen by tl	ne students)		
18UCSE606	PE	Unix Systems Programming	3-0-0	3	50	100	3	-	-
18UCSO607	OE	Digital Image Processing	3-0-0	3	50	100	3	-	-
18UCSE608	PE	Principles of Programming	3-0-0	3	50	100	3	-	-
18UCSE609	PE	Data Mining	3-0-0	3	50	100	3	-	-
18UCSE610	PE	Advanced Data Structures and Algorithms	3-0-0	3	50	100	3	-	-
18UCSE611	PE	Pattern Recognition	3-0-0	3	50	100	3	-	-
18UCSO612	OE	Embedded Systems	3-0-0	3	50	100	3	-	-
Total			17 - 0 -12	23	450	500		150	

VII Semester

			Teach	ing			Examinati	on	
					CIE	Theo	ry (SEE)	Practic	cal (SEE)
Course Code	Course	Course Title	L-T-P	Credits	Max.	*Max.	Duratio	Max.	Duratio
	Category		(Hrs/Week)		Mark	Mark	n (II-re)	Mark	n (II)
		Artificial Intelligence and Machine			S	S	(Hrs)	S	(Hrs)
18UCSC700	PC	Learning	4-0-0	4	50	100	3	-	-
18UCSC701	PC	Advanced Computer	4-0-0	4	50	100	3	_	_
		Architecture					_		
18UCSL702	PC	Artificial Intelligence and Machine Learning Lab	0-0-2	1	50			50	3
18UCSL703	PC	Major Project Phase-1	0-0-4	2	50			50	3
18UCSL704	PC	Internship	4weeks	2	50			50	3
	Elective Cou	urses (Two electives, one Program Elect	tive and one Op	en Elective	, are to be	e chosen b	y the studen	ts)	
18UCSE705	PE	Computer Graphics	3-0-0	3	50	100	3	-	-
18UCSE706	PE	Software Testing	3-0-0	3	50	100	3	-	-
18UCSO707	OE	Web Technology	3-0-0	3	50	100	3	-	-
18UCSE708	PE	Ad-hoc Networks	3-0-0	3	50	100	3	-	-
18UCSE709	PE	Operations Research	3-0-0	3	50	100	3	-	-
1911095710	DE	Multicore Architecture and	3.0.0	2	50	100	2		
10UCSE/10	re	Programming	3-0-0	5	30	100	3	-	-
18UCSE711	OE	Internet of Things	2-0-2	3	50	100	3	-	-
	Total			19	350	400	-	150	-

VIII Semester

			Teachi	ng			Examinatio	on	
Course Code		Course Title	ІТР		CIE	Theo	ory (SEE)	Practical (SEE)	
Course Coue	Course		L-I-I (Urs/Wook)	Credits	Max.	*Max.	Duration	Max.	Duration
	Category				Marks	Marks	(Hrs)	Marks	(Hrs)
191100000	DC	Distributed Systems and	4 0 0	4	50	100	2		
10005000	FC	Applications	4-0-0	4	50	100	5	-	-
18UCSL801	PC	Independent study	0 - 0 - 2	1	50	-	-	-	-
18UCSL802	PC	Major Project Phase – 2	0 -0 - 14	7	50	-	-	50	3
	Elective Cour	am Elective and	one Open I	Elective, a	re to be cho	sen by the stud	lents)		
1911055803	DE	Cryptography and	3 0 0	3	50	100	3		
100C5L005	FL	Network Security	3 - 0 - 0	5	50	100	5	-	-
18UCSO804	OE	Cloud Computing	3 - 0 - 0	3	50	100	3	-	-
18UCSE805	PE	Network Management	3 - 0 - 0	3	50	100	3	-	-
18UCSE806	PE	Mobile Applications	3 -0 - 0	3	50	100	3	-	-
18UCSE807	PE	Untology and Semantic	3 - 0 - 0	3	50	100	3	-	-
		Web				100			
18UCSE808	PE	Data Science	3 - 0 - 0	3	50	100	3	-	-
18UCSE809	PE	Blockchain Technology	3 - 0 - 0	3	50	100	3	-	-
Total			10 - 0 - 16	18	250	300		50	

Scheme-2018

Teaching **Examination** CIE **Theory (SEE) Practical (SEE) Course Code Course Title** L-T-P Credits Max. *Max. **Duration** Max. **Duration** (Hrs/Week) in hours Marks Marks in hours Marks 18PCSEC100 Advanced database 4-0-0 50 100 3 4 -_ management systems 18PCSEC101 Advanced Algorithms 4-0-0 4 50 100 3 _ _ 18PCSEE1XX Elective-I 3-0-2 50 100 3 4 _ _ 18PCSEE1XX Elective-II 3-0-2 100 3 4 50 _ _ 18PCSEE1XX Elective-III 3-0-2 50 100 3 4 _ _ 18PCSEL102 Algorithms and Database 0-0-3 2 50 50 3 _ _ Laboratory *** 18PCSEL103 Seminar – I ** 0-0-3 1 100 _ _ -_ 17-0-12 23 500 **50** 3 **400** Total -

Scheme of Teaching and Examination I Semester M. Tech (CSE)

Scheme of Teaching and Examination II Semester M. Tech (CSE)

		Teach	ing	Examination						
Course Code	Course Title	L-T-P		CIE	Theor	y (SEE)	Practic	Practical (SEE)		
		(Hrs/Week)	Credits	Max. Marks	*Max. Marks	Duration in hours	Max. Marks	Duration in hours		
18PCSEC200	Advanced Computer Networks	4-0-0	4	50	100	3	-	-		
18PCSEC201	Advanced Operating Systems	4-0-0	4	50	100	3	-	-		
18PCSEE2XX	Elective – IV	3-0-2	4	50	100	3	-	-		
18PCSEE2XX	Elective – V	3-0-2	4	50	100	3	-	-		
18PCSEE2XX	Elective –VI	3-0-2	4	50	100	3	-	-		
18PCSEL202	Operating System and Networks Laboratory ***	0-0-3	2	50	-	-	50	3		
18PCSEL203	Seminar – II **	0-0-3	1	100	-	-	-	-		
	Total	17-0-12	23	400	500	-	50	3		

List of Electives							
	I Semester		II Semester				
18PCSEE125	Research Methodologies& IPR	18PCSEE225	High Performance Computing				
18PCSEE126	Distributed Systems	18PCSEE226	Data Science				
18PCSEE127	Programming Paradigm	18PCSEE227	Machine Learning				
18PCSEE128	Cloud Computing	18PCSEE228	Wireless Networks & Mobile Computing				
18PCSEE129	Information and Network Security	18PCSEE229	Soft Computing				
18PCSEE130	Image Processing, Analysis and Machine Vision	18PCSEE230	Computer Vision				
18PCSEE131	Computer Graphics	18PCSEE231	Internet of Things				

Scheme of Teaching and Examination III Semester M.Tech. (CSE)

		Teach	ing	Examination						
Course Code	Course Title	ТТР		CIE	Theor	y (SEE)	Practical (SEE)			
Course Coue	(Hrs/Week		Credits	Max. Marks	*Max. Marks	Duration in hours	Max. Marks	Duration in hours		
18PCSEC300	Advanced Computer Architecture	4-0-0	4	50	100	3	-	-		
18PCSEE3XX	Elective – VII	3-0-2	4	50	100	3	-	-		
18PCSEL301 / 18PCSEE3XX	Internship in Industry or R & D Organisation / Elective VIII	** Min. 4 weeks during vacation after 2 nd Sem / 3-0-0	3	50 / 50	- / 100	-/3	50 / -	3 / -		
18PCSEL302	Project Work Phase – I***	0-0-15	9	50	-	-	50	3		
	Total	8/11-0-17	20	200	200 / 300	-	100 / 50	3		

	Electives III					
18PCSEE325	Pattern Recognition					
18PCSEE326	Software Engineering					
18PCSEE327	Game Theory					
18PCSEE328	Web Technology					
18PCSEE329	Natural Language Processing and Text					
	Mining					

Scheme of Teaching and Examination IV Semester M.Tech. (CSE)

		Teach	ing	Examination								
Course	Course Title	L-T-P		CIE	Theo	ry (SEE)	Practi	cal (SEE)				
Code		(Hrs/Week)	Credits	Max. Marks	*Max. Marks	Duration in hours	Max. Marks	Duration in hours				
18PCSEL400	Project Work Phase – II*	0-0-20	22	100	-	-	100	3				
	Total	0-0-20	22	100	-	-	100	3				

UG Courses-III Semester

18UCSC302

Data Structures and Applications

(4-0-0) 4

Contact Hours: 52

Course Learning Objectives (CLOs): This course focuses on the following learning perspectives:

- Working of various basic data structures and their implementation.
- Implementation issues of data structure in programming language.
- Selection of the appropriate data structure for solving a given problem.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to	POs(1-12) /	PSOs (13-16)
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Write programs to solve problemsusingPointersandStructures/Unions.	-	14	1,3,15,16
CO-2	Write programs to solve problems using files.	-	14	1,3,15,16
CO-3	Write programs to solve simple problems using stack and explain its working principles.	-	14	1,3,15,16
CO-4	Write programs to solve problems using queue and explain its working principles.	-	14	1,3,15,16
CO-5	Write programs to solve problems using Linked Lists and explain its working principles.	-	14	1,3,15,16
CO-6	Write programs to solve problems using trees and explain its working principles.	-	14	1,3,15,16
CO-7	Write programs to solve problems using Hashing and explain its working principles.	-	14	1,3,15,16

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	1.0	-	1.0	-	-	-	-	-	-	-	-	-	-	2.0	1.0	1.0

Pre-requisites: Problem Solving skills and knowledge of Programming in C language.

Contents:

Unit-I

Structures, unions and Pointers: Motivation for using structures. Pointer, access data from memory through pointer, pointer to structures. Motivation for dynamic memory requirement. Realizing arrays using pointer and dynamic memory allocation. Importance of memory management during allocation and de-allocation of memory.

10 Hrs

Unit-II

Stack: Realization of stack and its operations using static and dynamic structures. Application of stack in converting an expression from infix to postfix and evaluating a postfix expression. Heterogeneous stack using Unions. Applications of Stacks. **10 Hrs**

Unit-III

Queues: Realization of queues (FIFO, Double-ended queue, Priority queue) and its operations using static and dynamic data structures, Applications of Queues. **10 Hrs**

Unit-IV

Lists: Constructing dynamic data structures using self-referential structure (using the same realized linked Lists), operations on lists. Doubly Linked list. Application of Lists in sorting. 12 Hrs

Unit-V

Trees: Types of trees and their properties, Realization of trees using static and dynamic data structures. Operations on Binary trees and their application in searching (BST and AVL Tree), Binary heap as priority queues, Applications of Trees.

Hash Table: Realizing effective hash table with proper data stricture and hash function,its application.10 Hrs

Reference Books:

- 1) Aaron M. Tenenbaum, Yedidyah Langsam & Moshe J. Augenstein, "Data Structures using C and C++", Pearson Education, 2006
- 2) E. Balagurusamy, "Programming in ANSI C", 7th Edition, Tata McGraw-Hill, 2016
- 3) Behrouz A. Forouzan & Richard F. Gilberg, "Computer Science: A Structured Programming Approach Using C", 2nd Edition, Cengage Learning, 2003.

18UCSC303

Computer Organization and Architecture

e (3-0-0) 3 Contact Hours: 39

Course Learning Objectives (CLOs): This course focuses on the following learning perspectives:

- Basics of sub systems of a computer, their organization, structure and operation.
- Basic concept of programs as sequences of machine instructions.

- Operational aspects of I/O devices and standard I/O interfaces.
- Memory hierarchy and concept of virtual memory.
- Arithmetic and logical operations with integer and floating-point operands.
- Organization of a simple processor, pipelined processor and other computing systems.

Descr	iption of the Course Outcome:	Mapping to	POs(1-12) /	PSOs (13-16)
At the	end of the course the student will be	Substantial	Moderate	Slight
able to):	Level (3)	Level (2)	Level (1)
CO-1	Explain the basic working principles			
	of various sub-systems of a	-	-	1,2,8
	computer system.			
CO-2	Explain the working principles of			
	different sub systems, such as		3.8	1246
	processor, Input/output, and	-	5,0	1,2,4,0
	memory.			
CO-3	Design the required memory bank	_	3	_
	using basic memory units.	-	5	-
CO-4	Explain hardwired control and micro			
	programmed control, pipelining,	3.4	1	2
	embedded and other computing	- ,		
	systems.			
CO-5	Design simple arithmetic and logical	1 0	100	
	features	4,0	1,2,3	-
	ובמנעובט.			

Course Outcomes (COs):

POs/PSO s	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	1.5	1.3	2.3	2.3	I	1.0	-	2.0	I	-	-	-	-	-	-	-

Pre-requisites: Knowledge of Digital Electronics and Programming language.

Contents:

Unit-I

Basic Structure and Machine Instructions: Basic Operational Concepts, Bus Structures, Performance - Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement.

Machine Instructions and Programs: Memory Location and Addresses, Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Assembly

Additional Instructions, Encoding of Machine Instructions.

Enabling and Disabling Interrupts, Handling Multiple Devices, Controlling Device Requests, Exceptions, Direct Memory Access, Buses, Interface Circuits, Standard I/O Interfaces – PCIBus, SCSI Bus, USB. 8

Language, Basic Input and Output Operations, Stacks and Queues, Subroutines,

Unit-II

Hrs

Unit-III

Memory System: Basic Concepts, Semiconductor RAM and ROM Memories, Speed, Size and Cost, Cache Memories – Mapping Functions, Replacement Algorithms, Performance Considerations. 8 Hrs

Unit-IV

Arithmetic: Numbers, Arithmetic Operations and Characters, Addition and Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Positive Numbers, Signed Operand Multiplication, Fast Multiplication, Integer Division, Floating-point Numbers and Operations. 8 Hrs

Unit-V

Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Micro programmed Control.
 Pipelining, Embedded Systems and Large Computer Systems: Basic Concepts of pipelining, Examples of Embedded Systems, Processor chips for embedded applications, Simple Microcontroller.
 7

Reference Books:

- 1) Carl Hamacher, Zvonko Vranesic & SafwatZaky, "Computer Organization", 5th Edition, Tata Mc Graw Hill, 2011.
- 2) William Stallings, "Computer Organization & Architecture", 9th Edition, Prentice Hall of India, 2012.
- 3) Vincent P. Heuring & Harry F. Jordan, "Computer Systems Design and Architecture", 2nd Edition, Pearson education, 2004.

18UCSL306	Data Structues and Applications Laboratory	(0-0-3) [·]
-----------	--	----------------------

Contact Hours: 36

Course Learning Objectives (CLOs): This laboratory course focuses on the following learning perspectives:

.5

8 Hrs

- Realization of fundamental data structures like stacks, queues, linked lists and trees.
- Compare and contrast the benefits of dynamic and static data structure implementations.
- Selection of the appropriate data structure for solving a given problem.

Descr	iption of the Course Outcome:	Mapping to	POs(1-12) /	PSOs (13-16)
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Write programs to solve problems using Pointers and Structures/Unions.	-	14	1,3, 15, 16
CO-2	e end of the course the student will be to:Substantial Level (3)Moderate Level (2)Slight Level (1)Write programs to solve problems using files141,3, 15, 16Write programs to solve problems using files141,3, 15, 16Write programs to solve problems using stack141,3, 15, 16Write programs to solve problems using stack141,3, 15, 16Write programs to solve problems using queue141,3, 15, 16Write programs to solve problems using queue141,3, 15, 16Write programs to solve problems using queue141,3, 15, 16Write programs to solve problems using the course to solve problems using the course to solve problems using trees141,3, 15, 16Write programs to solve problems using trees141,3, 15, 16-Write programs to solve problems using trees141,3, 15, 16			
CO-3	Write programs to solve problems using stack.	-	14	1,3, 15, 16
CO-4	Write programs to solve problems using queue.	-	14	1,3, 15, 16
CO-5	Write programs to solve problems using Linked Lists.	-	14	1,3, 15, 16
CO-6	Write programs to solve problems using trees.	-	14	1,3, 15, 16
CO-7	Write programs to solve problems using Hashing.	-	14	1,3, 15, 16

Course Outcomes (COs):

POs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	1.0	-	1.0	-	-	-	-	-	-	-	-	-	-	2.0	1.0	1.0

Suggested list of term works:

The list of experiments is based on the following concepts:

- 1. Pointers and Structures / Unions.
- 2. Files
- 3. Stack
- 4. Queue
- 5. Linked Lists
- 6. Trees
- 7. Hashing

Reference Books:

- 1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein: Data Structures using C and C ++, Pearson Education / PHI, 2006,
- 2. E. Balagurusamy: Programming in ANSI C, 7th Edition, Tata McGraw-Hill, 2016.
- 3. Behrouz A. Forouzan and Richard F. Gilberg: Computer Science: A Structured Programming Approach Using C, 2nd Edition, Ceng

IV Semester

18UCSC400

ARM Processor

(3-0-0) 3

Contact Hours: 39

Course Learning Objectives (CLOs): This course focuses on the following learning perspectives:

- Understand the internal architecture, instruction set of ARM7 microcontroller, assembling process & implement small programs.
- Design & develop Assembly Language Program /& C program for a given real time application.
- Understand the use of interrupts & other advanced concepts related to ARM7
- Demonstrate working knowledge of the necessary steps and methods used to interface ARM7 to devices such as motors, LCD, ADC, and DAC etc.

Descr	iption of the Course Outcome:	Mapping to	Mapping to POs(1-12) / PS						
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)					
CO-1	Explain the features of embedded systems, architecture of ARM7 and applications.	-	1	-					
CO-2	Write a program using the instruction set of ARM and THUMB state to solve the engineering problems.	-	2,5	13					
CO-3	Explain the exception, interrupts and interrupt handling schemes and write program to solve simple problems.	-	3	-					
CO-4	Explain the architectural features of LPC2148 microcontrollers.	-	1,2	13,15					

Course Outcomes (COs):

C	:0-5	Write	m t	0	inter	fac	е												
		hardware to microcontrollers.)	LPC2148					-			5		3,12				
		microcor	ntrolle	ers.															
		15.6.0					_		_										1
	PO	s/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
	Ма	apping	20	20	15		20				_	_		10	1 0	_	1 0	_	
	L	_evel	2.0	2.0	1.5		2.0							1.0	1.0		1.0		

Pre-requisites: None

Contents:

Unit-I

ARM Embedded Systems and ARM Processor Fundamentals: Evolution of Microcontroller and Microprocessor, The RISC design philosophy, ARM design philosophy, embedded system hardware- AMBA bus protocol, embedded system software- applications. ARM core data flow model, Registers, CPSR-Processor modes, Banked registers. Pipeline- Characteristics. 9 Hrs

Unit-II

ARM Instruction Set: Fundamentals of ARM instructions, Barrel shifter, Classification and explanation of instructions with examples-Data processing, Branch, Load-store, SWI and Program Status. **7 Hrs**

Unit-III

Introduction to THUMB and ARM Programming: Introduction to THUMB, Differences between ARM and THUMB, Register usage in Thumb, ARM Thumb Interworking. General Structure of ARM assembly module, Assembler directives. Simple ALP programs on Arithmetic & logical operations, Factorial, string operation, sorting, searching, and Scan. 8 Hrs

Unit-IV

Exception and Interrupt handling schemes: Exception handling- ARM processor exceptions and modes, vector table, exception priorities, link register offsets. Interrupts-assigning interrupts, interrupt latency, IRQ and FIQ exceptions with example- code for enabling and disabling IRQ and FIQ exceptions, Comparison between exception and interrupts. Interrupt handling schemes- nested interrupt handler, non-nested interrupt handler. Basic interrupt stack design. **7 Hrs**

Unit-V

LPC2148 ARM CPU: Salient features, applications, block diagram, memory mapping. Functional features of Interrupt controller, RTC, USB, UART, I2C, SPI, SSP controllers, watch dog timers and other system control units. Peripherals - GPIO, PLL & Timers: Features, Register description with example and Applications. 8 Hrs

Reference Books:

- 1) Andrew N. Sloss, ARM System Developer's guide, ELSEVIER Publications, 2016
- 2) William Hohl, ARM Assembly Language, CRC Press.
- 3) Steve Furber, ARM System-on-chip Architecture by, Pearson Education, 2012
- 4) James K. Peckol, Embedded Systems: A Contemporary Design Tool, 2008
- 5) Jonathan W. Valvano, Brookes / Cole, Embedded Microcomputer Systems, Real Time Interfacing, 1999
- 6) LPC 2148 USER MANUAL.

18UCSL406	ARM Processor Laboratory	(0-0-3) 1.5
-----------	--------------------------	-------------

Contact Hours: 36

Course Learning Objectives (CLOs): This laboratory course focuses on the following learning perspectives:

- Understand the internal architecture, instruction set of ARM7 microcontroller, assembling process & implement small programs.
- Design & develop Assembly Language Program /& C program for a given real time application.
- Understand the use of interrupts & other advanced concepts related to ARM7
- Demonstrate working knowledge of the necessary steps and methods used to interface ARM7 to devices such as motors, LCD, ADC, and DAC etc.

Course Outcomes (COs):

De	Description of the Course Outcome:										Mapping to POs(1-12) / PSOs (13-16)									
At ab	able to:										ubs Lev	stant vel (3	tial 3)	•	Slight Level (1)					
CO-1 Execute assembly level codes for a given specific problem using ARM processor.												-		2	, 4	3,15				
СС)-2	Execut a given process	t e e sor	ecific	dded ; prob	C pr lem	ograi using	ms g Af	for RM			-		4	,14		15,16			
СС	CO-3 processor. Implement programs for interfacing with real world devices such as LCD's Keyboards, DAC, ADC Relays Motors etc.											13		4,5	5,16		3,1	2		
F	POs/PSOs 1 2 3 4 5 6 7									8	9	10	11	12	13	14	15	16		

Mapping	_	2.0	1.0	2.0	2.0	-	-	-	-	-	-	1.0	3.0	2.0	1.0	1.5
Levei																

Course Contents:

PART A: Conduct the following experiments to learn ALP using ARM:

- Arithmetic and logical operations
- Interrupts related operations
- Timer related applications.

PART B: Conduct interfacing experiments to learn embedded C for ARM:

- LCD- interfacing
- Stepper Motor Interfacing
- Real time sensors Interfacing
- 7-segment LED interface

Reference Books:

- 1. Andrew N. Sloss, ARM System Developer's guide, ELSEVIER Publications, 2016
- 2. William Hohl, ARM Assembly Language, CRC Press.
- 3. Steve Furber, ARM System-on-chip Architecture by, Pearson Education, 2012
- 4. James K. Peckol, Embedded Systems: A Contemporary Design Tool, 2008
- 5. Jonathan W. Valvano, Brookes / Cole, Embedded Microcomputer Systems, Real Time Interfacing, 1999
- 6. LPC 2148 USER MANUAL.

18UCSL407 Introductory Project (0	0-0-2) 1
-----------------------------------	----------

Contact Hours: 24

Course Learning Objectives (CLOs): This course enables the student to identify the community expectations in terms of possible engineering solutions and prepare project proposal.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to POs(1-12) / PSOs (13-16)							
At the able to	end of the course the student will be ::	Substantial Level (3)	Moderate Level (2)	Slight Level (1)					
CO-1	Identify the societal problems	-	-	2,6,7,9,12,13					
CO-2	Analyze real environment and Formulate the problem statement.	-	-	9,12,13					

CO-3	Conduct exhaustive literature survey	-	-	9,12,13
CO-4	Propose sustainable engineering solutions	-	-	5,7,12,13
CO-5	Prepare the report and communicate effectively through presentation.	-	-	9,10,12,13
CO-6	Manage the project in terms of various resources in a particular discipline or in a multi-disciplinary domain.	-	-	11

POs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	I	1.0	-	-	1.0	1.0	1.0	-	1.0	1.0	1.0	1.0	1.0	-	-	-

Guidelines for conduction:

- 1. Team consists of 4-5 students.
- 2. Students have to choose a guide among the faculty members who are teaching their semester.
- 3. In consultation with guide, the team should carry out their project work.
- 4. Final evaluation is based on seminar and report submission.
- 5. This requires designated committee to monitor the process of conduction

V Semester

18UHUC500 Management, Enterprenuership, and IPR (4-0-0) 4

Contact Hours: 52

Course Learning Objectives (CLOs): This course focuses on the following learning perspectives:

- The evolution of IT managementand related aspects.
- The scope of entrepreneurship in digital firms.
- The issues and procedures related to intellectual property rights.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to	POs(1-12)/	PSOs (13-16)				
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)				
CO-1	Study the principles of management in a given organization.	-	2 -					
CO-2	Describe and analyze the role of staffing and the need for motivation in management	-	2	-				
CO-3	Explain the role of entrepreneur in establishing an organization.	-	- 2,6					
CO-4	Describe the importance and provisions of institutional support in establishing an enterprise.	-	2,6	-				
CO-5	Explain the core principles, procedures and related laws and apply IPR for given new idea/invention.	-	5,8,10	-				
PO	s/PSOs 1 2 3 4 5 6 7	8 9 10	11 12 13	14 15 16				

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	-	2.0	-	I	2.0	2.0	I	2.0	I	2.0	-	-	-	-	-	-

Pre-requisites: Knowledge of humanities course. **Contents:**

Unit-I

Engineering and Management: Historical Development of Engineering and Management, Management as synthesis.

Planning, Forecasting and Decision Making: Nature of Planning, foundation of planning, some planning concepts, forecasting, nature of decision making, management science, tools for decision **10Hrs**

Unit-II

Organizing and staffing: Nature of organizing, traditional organizational theory, technology and modern organization structures, staffing technical organization, authority and power; delegation, meeting and committees. Motivation: Motivation, leadership, motivating and leading technical professionals. Controlling: Process of control, financial and non-financial controls. **11 Hrs**

Unit-III

Foundations of Entrepreneurship: Meaning of entrepreneur, functions of entrepreneur, types of entrepreneur, concept of entrepreneurship, role of entrepreneurs in economic development& barriers of entrepreneurship. Small Scale Industry: Definition, characteristics of SSI, role of SSI in economic development, advantages of SSI, steps to start an SSI, impact of liberalization, privatization, and globalization on SSI, definition of ancillary and tiny industry. **11 Hrs**

Unit-IV

Government and Institutional Support: Nature of support from government, objectives and functions of SSI, SIDBI, DIC, single window agency, KIADB, KSSIDC, KSFC. Preparation of Project: Meaning of project identification, project report, contents and formulation, identification of business opportunities, feasibility studies, types and purpose.

Hrs

Unit-V

Intellectual Property Rights: Meaning and forms of intellectual property rights, competing rationale for protection, international conventions and security. Copyright: Meaning of copyright, content of copy right, ownership and rights, period of copyright, assignment and relinquishment of copyright, license, infringement of copy right, fair use, offenses and penalties. Patents: Concept of patent, patentable inventions, procedure for obtaining patent, rights and obligations of patent holders, infringements and remedies, offenses and penalties. Industrial Designs: Definition of design, procedure for registration, rights conferred by registration, infringements, Trademark and related issues.

Reference Books:

- 1) Kenneth C. Laudon and Jane P. Laudon, "Management Information Systems -Managing the Digital Firm", 8th Edition, Pearson Publications, 2017.
- Making Intellectual Property Work for Business Handbook for Chambers of Commerce and Business Associations Setting Up Intellectual Property Services by ICC and WIPO, Paperback, 2012.

18UCSC502 Compiler Design and System Software

e (3-0-0) 3 Contact Hours: 39

Course Learning Objectives (CLOs): This is a 3 credit course at undergraduate level enabling the students to understand structure of a compiler, representation of patterns and syntax using lexical rules and grammars respectively, working of parsers, translation schemes, code optimization and code generation, working of assemblers, loaders, linkers and macro processor.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to I	POs(1-12)/ PS(Os (13-16)
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Explain the basic structure and working principles of phases of compiler.	-	13	1
CO-2	Write a parser for the given input based on the appropriate parsing technique and validate the design	13,14	1,2,3	15
CO-3	Generate an optimized intermediate code.	-	1,2,3,13	15
CO-4	Explain the working principles of run time environments that include stack allocation, heap management and garbage collection technique used in compiler.	-	1,2,3,13	15
CO-5	Generate optimized code for the given intermediate code	-	1,2,3,13	15
CO-6	Design Assembler for the given language specification and validate the design.	-	1,2,3,13,14	15
CO-7	Design Macroprocessor for the given language specification and validate the design.	-	1,2,3,13,14	15

CO-8	Explain the working principles of			
	Linkers & Loaders for the given	-	1,2,3,13,14	15
	language specification.			

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	1.9	2.0	2.0	-	-	-	I	I	I	-	-	-	2.1	2.3	1.0	-

Pre-requisites: Knowledge of

- Finite Automata and Formal languages
- Programming language (any)

Contents:

Unit-I

Introduction: Different Phases of Compilers, Comparison of Compilers and Interpreters. Top-down Parsing: RDP and Predictive parsing. **7 Hrs**

Unit-II

Bottom-up Parsing: Simple LR, LALR, CLR, parsers ambiguous grammars. 8 Hrs

Unit-III

Intermediate Code Generation and Optimizations: Syntax-directed translation; Syntax-directed translation schemes, Variants of syntax trees; Three-address code; Types and declarations; Translation of expressions; Type checking; Control flow; Various techniques of machine independent optimization. **8 Hrs**

Unit-IV

Run-Time Environments: Storage Organization; Stack allocation of space; Access to non-local data on the stack; Heap management; Introduction to garbage collection. Code Generation: Issues in the design of Code Generator; The Target language; Addresses in the target code; Basic blocks and Flow graphs; Optimization of basic blocks; A Simple Code Generator 8 Hrs

Unit-V

Ancillary Code Processing Techniques: Generic description of Assembler, Loader, Linker and Macro's. Assemblers: Basic Assembler Features & Functions and Design of assembler. Loaders and Linkers: Basic Loader Functions - Design of Loaders and Linkers Macro Processor: Design of Macro Processors. 8 Hrs

Reference Books:

- 1) Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, "Compilers- Principles, Techniques and Tools", 2/E, Addison-Wesley, 2007.
- 2) D.M.Dhamdhere, "System Programming and Operating Systems", 2nd revised edition, Tata McGraw Hill, 2009 reprint.
- 3) Leland L Beck, "System Software : An Introduction to Systems Programming" 3rd Edition Pearson Education 2007
- 4) John J Donovan, "System Programming", Tata McGraw-Hill 2017

18UCSL505Compiler Design and System Software Lab(0-0-3)1.5

Contact Hours: 36

Course Learning Objectives (CLOs): This laboratory course focuses on representation of patterns and syntax using lexical rules and grammars respectively, Implementation of parser & translation schemes, Implementation of assemblers, loaders, linkers & macro processor, Knowledge of system level APIs for implementation of IPC and system commands.

Course outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to F	POs(1-12)/ P	SOs (13-16)
At the able to	end of the course the student will be o:	Substantial	Moderate	Slight
CO-1	Prepare the grammar for the given constructs and Write a program using compiler writing tools to implement lexical analyzer and parser.	13,14	1,2,3	15
CO-2	Write a program to implement a parser.	13,14	1,2,3	15
CO-3	Write a program to implement assembler functions.	13,14	1,2,3	15
CO-4	Write a program to Implement various UNIX commands using system calls.	13,14	1,2,3	15
CO-5	Use IPC concepts in implementing communication protocol.	13,14	1,2,3	15

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	2.0	2.0	2.0	-	-	-	-	-	-	-	-	-	3.0	3.0	1.0	-

Prerequisites: Knowledge of: Unix Operating System, Any programming language, and Finite automata and formal Languages

Contents:

- **1.** Programs on Lex and Yacc.
- 2. Implementation of parser.
- 3. Implementation of assembler.
- 4. Emulation of basic commands of UNIX using system calls.
- 5. Application development using Inter Process Communication.

1	8	U	С	SI	_5	0	6	
---	---	---	---	----	----	---	---	--

Minor Project - 1

(0-0-2)1

Contact Hours: 24

Course Learning Objectives (CLOs): This course enables the student to identify the community expectations in terms of possible engineering solutions and prepare project proposal.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to	POs(1-12) / PS	Os (13-16)
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Identify the societal problems.	-	2,6,7,9,12,13	-
CO-2	Analyze real environment and Formulate the problem statement.	-	2,9,12,13	-
CO-3	Conduct exhaustive literature survey	-	2, 9,12,13	-
CO-4	Propose sustainable engineering solutions / prototypes.	-	3,5,7,12,13	-
CO-5	Prepare the report and communicate effectively through presentation.	-	8,9,10,12	-
CO-6	Manage the project in terms of various resources in a particular discipline or in a multi-disciplinary domain.	-	11	-

POs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	-	2.0	2.0	-	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	-	-	-

Guidelines for conduction:

- 1. Team consists of 4-5 students.
- 2. In consultation with guide, the team should carry out their project work.
- 3. Final evaluation is based on following evidence will be looked into and accordingly rubrics will be developed, such as problem statement, design, prototype/part of implementation, use of standard tools and techniques for testing and validation procedure.
- 4. This requires designated committee to monitor the process of conduction

18UHUL507

Soft Skills / Aptitude

(0-0-2) 1

Contact Hours: 24

Course Learning Objectives (CLOs):

This is included with the objectives of improving the communication skills, proficiency in English language and aptitude ability of the student to enhance the employability.

Course Outcomes (COs):

Descri	ption of the Course Outcome:	Mapping to POs(1-12) / PSO(13-16)							
At the obe	end of the course the student will e to:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)					
CO-1	Explain the significance of communication in the profession.	-	10	-					
CO-2	Use the English language with proficiency	-	10	12					
CO-3	Solve Aptitude related problems	-	9	12					
CO-4	Demonstrate the competency in the placement activities.	-	9	-					

POs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	-	-	-	-	-	-	-	-	2.0	2.0	-	1.0	-	-	-	-

Contents:

Training on communication skills, proficiency in English language and aptitude ability involving the internal and external resource.

Evaluation:

Both the internal and external resource persons shall be engaged in imparting the related knowledge and shall have only CIE as the evaluation component. There shall be one test conducted at the end for 25 marks in Aptitude testing and there shall be one presentation by the student for 25 marks or any other suitable testing components. The arrangement for CIE evaluation is to be done by the department and maintain the relevant documents.

VI Semester

ELECTIVES

18UCSE606	UNIX Systems Programming	(3-0-0) 3
		Contact Hours: 39

Course Learning Objectives (CLOs): This course facilitates the students to get familiarity with system calls, UNIX kernel structure and use of standards like ANSI and POSIX in programming.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to POs(1-12)/ PSOs (13-16)					
At the	end of the course the student will be	Substantial	Moderate	Slight			
able it).	Level (3)	Level (2)	Level (1)			
CO-1	Describe the ANSI and POSIX						
	standards used in UNIX operating	-	1	13			
	system and programming						
CO-2	Explain the UNIX file types and						
	demonstrate the use of UNIX file	13,14	1,2,3	15			
	APIs in programming.						
CO-3	Identify the process management						
	activities of UNIX and write	12 14	1 2 2	15			
	programs that make use of	13,14	1,2,3	15			
	processes and their environment.						
CO-4	Describe the use of signals in UNIX						
	and illustrate the use of signals in	13,14	1,2,3	15			
	programs.						
CO-5	Explain the need of daemons in						
	UNIX and identify the use of	13,14	1,2,3	15			
	daemons in UNIX OS.						
CO-6	Explain inter process						
	communication mechanisms of	13,14	1,2,3	15			
	UNIX and write programs to						

	demonstrate IPCs for client-server interactions.			
CO-7	Describe the ANSI and POSIX standards used in UNIX operating system and programming.	-	1	13

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	2.0	2.0	2.0	-	-	-	-	-	-	-	-	I	2.4	3.0	1.0	-

Pre-requisites: Knowledge of

- UNIX operating system and its commands
- Operating Systems Fundamentals
- Basics of Networking

Contents:

Unit-I

ANSI and POSIX Standards: UNIX and ANSI Standards – ANSI C standard, POSIX standards, POSIX environment, POSIX feature test macros, limits checking at compile time and run time; UNIX and POSIX APIs – POSIX APIs, UNIX and POSIX development environment, API common characteristics

UNIX Files: file types, UNIX and POSIX file systems, UNIX and POSIX file attributes, inodes in UNIX system V, UNIX kernel support for files, directory files, hard and symbolic links. **7 Hrs**

Unit-II

UNIX File APIs: General file APIs, open, read, write, close, fcntl, lseek, link, unlink, stat, fstat, lstat, access, chmod, fchmod, chown, fchown, lchown, utime, file and record locking, directory file APIs, device file APIs, FIFO file APIs, symbolic link file APIs.

7 Hrs

Unit-III

Environment of a UNIX Process: Introduction, main function, process termination, command line arguments, environment list, memory layout of a C program, alloca function, environment variables, setjmp and lonjmp functions, getrlimit and setrlimit functions

Process Control: Introduction, process identifiers, fork function, vfork function, exit functions, wait and waitpid functions, race conditions, exec functions, changing user IDs and group IDs, system function. **9 Hrs**

Unit-IV

Process Relationships: Introduction, terminal logins, network logins, process groups, sessions, controlling terminal, job control

Signals and Daemon Processes: Signals – UNIX kernel support for signals, signal, signal mask, sigaction, sigsetjmp and siglongjmp APIs, kill, alarm, interval timers;

Daemon Processes – introduction, daemon characteristics, coding rules, error logging, client-server model. 9 Hrs

Unit-V

Interprocess Communication: Introduction, pipes, message queues, UNIX APIs for message queues, client-server example for message queue, sockets, socket APIs, client-server example for socket. **7 Hrs**

Reference Books:

- 1) Terrence Chan, "UNIX System programming using C++", Prentice Hall India, 2015
- 2) W. Richard Stevens, "Advanced Programming in the UNIX environment", Pearson Education/ PHI, 2005
- **3)** Kay A Robbins & Steven Robbins, "Unix Systems Programming: Communication, Concurrency, and Threads", Prentice Hall Publications, 2003.

VII SEMESTER

18UCSC700Artificial Intelligence and Machine Learning(4-0-0) 4Contact Hours: 52

Course Learning Objectives (CLOs): This course focuses on following learning perspectives:

- To introduce the basic concepts, theories and state-of-the-art techniques of artificial intelligence and machine learning.
- Enable student with knowledge enough to be a self-learner in exploring the application of machine learning /AI algorithms in the different fields of science, medicine, finance etc.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to	POs(1-12)/	PSOs (13-16)
At the	end of the course the student will be	Substantial	Moderate	Slight
		Level (3)	Level (2)	Level (1)
CO-1	Explain the world, behavior of agents and problem-solving aspects of agents.	-	3,4	1,2
CO-2	Demonstrate the representation and usage of knowledge using First order logic.	-	3,4	1,2
CO-3	Explain the decision-making process with incomplete, inconsistent and everchanging facts.	-	3,4	-
CO-4	Explain machine learning concepts and range of problems that can be handled by machine learning.	-	3,4	-

CO-5 Apply the concepts of and the machine learning to the real-world problems.											-			-			3,4,	5
	POs	s/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Ma L	pping evel	1.0	1.0	2.0	2.0	2.0	-	-	-	-	-	-	-	-	-	-	-

Pre-requisites: Knowledge of

- 1. Logic
- 2. Discrete Mathematics
- 3. Programming Fundamentals

Contents:

Unit-I

Introduction: Al Problems Underlying Assumption, Al Techniques, Criteria for Success **State Space Search & Heuristic Search Techniques:** Defining the Problems as A State Space Search, Production Systems, Production Characteristics, Issues in The Design Of Search Programs.

Generate And-Test: Hill Climbing, Best-First Search, Problem Reduction, Constraint Satisfaction, and Means-ends Analysis. **11**

Hrs

Unit-II

Knowledge Representation: Issues, Representations and Mappings, Approaches to Knowledge Representation.

Using Predicate Logic: Representation Simple Facts in Logic, Representing, Computable Functions and Predicates, Resolution. Representing Knowledge Using Rules, Procedural Versus Declarative Knowledge, Logic Programming, Forward Versus Backward Reasoning. 11 Hrs

Unit-III

Statistical Reasoning, Probability and Uncertainty: Bayes' Theorem, Full joint probabilistic distribution, Bayesian Networks and Probabilistic inferences, Dumpster Shafer Theory.

Forms of learning: Issues in designing a learning system. Assumptions of Common Machine Learning Models. 10 Hrs

Unit-IV

Linear Regression: Multivariate Regression, Logistic regression, Polynomial Regression.

Linear Models for Classification: Decision Trees, Regression Trees, K-nearest neighbors (KNN) algorithm. Bias Variance Trade off. 10 Hrs

Unit-V

Perceptron: Neural Networks - Introduction, Early Models, Perceptron Learning, Backpropagation, Initialization, Training & Validation, Support Vector Machines, Introduction, Early Models, Unsupervised learning and clustering – k-means clustering, hierarchical clustering. **10 Hrs**

Reference Books:

- **1)** Elaine Rich and Kevin Knight "Artificial Intelligence", 2nd Edition, Tata Mcgraw-Hill, 2005.
- **2)** Stuart Russel and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Prentice Hall, 2009.
- **3)** Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman "The Elements of Statistical Learning".
- 4) Christopher Bishop, "Pattern Recognition and Machine Learning"
- 5) Mitchell Tom "Machine Learning", McGraw Hill, 1997.

18UCSL702 Artificial Intelligence and Machine Learning (0-0-2) 1 Laboratory

Contact Hours: 26

Course Learning Objectives (CLOs): This course is in line with the theory course Artificial Intelligence & Machine Learning (18UCSC700). It focuses on hands on experience on creation of data models, database design, programming using appropriate technology.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to	POs(1-12) /	PSOs(13-16)
At the able to	end of the course, the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Represent the Knowledge for the given scenario using appropriate tools techniques and language.	-	3,4,5	-
CO-2	Identify data preprocessing requirement of a given data set for the learning algorithms.	-	3,4,5	-
CO-3	Demonstrate of the strengths and weaknesses of regression and classification approaches in machine learning.	-	3,4,5	-
CO-4	Demonstrateunsupervisedalgorithmsforclusteringrequirement on a data set from thereal world using python.	-	3,4,5	-
CO-5	Represent the Knowledge for the given scenario using appropriate tools techniques and language.	-	3,4,5	-

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	-	-	2.0	2.0	2.0	-	-	-	١	-	-	-	-	-	-	-

Pre-requisites: Knowledge of

- 1. Logic
- 2. Discrete Mathematics
- 3. Programming Fundamentals

Course Contents

This course is in line with the theory course Artificial Intelligence & Machine Learning (18UCSC700). There will be one problem with the **Knowledge Representation** and four problems on **Machine Learning** (Linear Regression, Multilinear regression, Polynomial regression, Decision Tree, K-means clustering). The problems to be composed by the faculty are announced to the students. The student will analyze the problem, justify the requirement of AI Approach for the solution, choose the platform or technology for implementations and demonstrate all the steps involved like preprocessing the dataset, importing the dataset, Spitting the dataset into the training set and test set, training the model on the training dataset, predicting the test set results, Visualising the Training set results, Visualising the test set results, etc where ever applicable. The students will submit implementation, conduction and observation write up for each problem. An internal examination and 5 problems work will be used to grade the student's performance in this course.

Associated Lab Works (Sample)

- 1. Represent facts and relationships of any famous epic of your choice using first order logic, implement and demonstrate some queries.
- 2. Build a decision tree for the case of SDMCET students' performance based on the IA-1, IA-2, IA-3, CTA, Attendance, SEE marks (optional) and classifying them into one of the Grade S, A, B, C, D, E & F. Study of precision of classification by including the 10th, 12th and CET/COMED-K into consideration.
- Given the features of an email like , Sender's email ID, Number of typos in the email, Occurrence of words like "offer", "prize", "free Gift", classify the email as Spam or not. Use the feature vector to train a Logistic classifier which emits a score in the range 0 to 1. If the score is more than 0.5, we label the email as spam. Otherwise, we don't label it as spam. (https://magoosh.com/).
- 4. Linear or polynomial regression to predict the salary of a person given the designation, no of years of experience, location of work, previous financial years profit etc.
- 5. A Hospital Care chain wants to open a series of Emergency-Care wards within a region. We assume that the hospital knows the location of all the maximum accident-prone areas in the region. They have to decide the number of the

Emergency Units to be opened and the location of these Emergency Units, so that all the accident-prone areas are covered in the vicinity of these Emergency Units. The challenge is to decide the location of these Emergency Units so that the whole region is covered. Here is when K-means Clustering comes to rescue! (<u>https://www.edureka.co/blog/k-means-clustering/</u>)

18UCSL704

Internship

2 Credits

Contact Hours: 4 weeks

Course Learning Objectives (CLOs): Internship provides an opportunity to get industry exposure to real time scenarios that include professional skill development programs and adhere to the professional standards.

Course Outcomes (COs):

		Mapping to P	Os(1-12) /	PSOs (13-16)
Descr At the able to	end of the Course Outcome: end of the course the student will be	Substantial Level (3)	Modera te Level (2)	Slight Level (1)
CO-1	Explore the domain knowledge	1, 8, 2,12	-	-
CO-2	Apply the knowledge and skills in the professional career.	3,5, 8, 13,12	11, 16	6, 7
CO-3	Prepare a technical report	4,5, 8, 14,12	16	-
CO-4	Demonstrate the knowledge gained through presentation.	5, 8, 15,12	-	-

POs/PS Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping	3.	3.	3.	3.	3.	1.	1.	3.	3.	3.	2.	3.	3.	3.	3.	2.
Level	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Prerequisites: Knowledge of both theory and practical courses learnt in all the previos semesters and relevant value-added information.

ELECTIVES

(3-0-0) 3
ontact Hours: 39

Course Learning Objectives (CLOs): This course introduces fundamental principles of computer graphics, its architecture and how transformations of objects are carried out. It facilitates students to identify good design principles to solve challenges involved in simulating real world objects/conditions. It also provides the students to learn and apply the aspects of interaction with computer and exposes them to open-source tools like OpenGL.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to	POs(1-12) /	PSOs(13-16)
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Explain the principles of Computer Graphics Architecture used in industry relevant tool like OpenGL.	-	13,14	1,2,12
CO-2	Explain the design objectives of APIs used in OpenGL.	-	14,12	1,5
CO-3	Applyinputinteractiontechniquesusedingraphicsenvironment.	14	2	-
CO-4	Apply affine transformations to solve problems relating to object transformations.	13	14	1
CO-5	Discriminate the views of objects in parallel and perspective projections under various lighting conditions.	-	13	14
CO-6	Formulate mathematical strategies for scan conversion algorithms to realize basic primitives, and represent curve and surfaces.	13,14	-	1,12

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	1.0	1.5	I	I	1.0	-	-	-	-	-	-	1.3	2.5	2.1	-	-

Pre-requisites: Knowledge of

- Basic Engineering Graphics
- Linear Algebra (Scalars, Vectors, Matrices)
- Algorithms and C programming.

Contents:

Unit-I

Introduction : Applications of computer graphics; A graphics system; Images: Physical and synthetic; Imaging systems; The synthetic camera model; The programmer's

interface; Graphics architectures; Programmable pipelines; Performance characteristics. Graphics Programming: The Sierpinski gasket; Programming two dimensional applications

Input and Interaction: Interaction; Input devices; Clients and servers; Display lists; Display lists and modeling; Programming event-driven input; Menus; Picking; A simple CAD program; Building interactive models; Animating interactive programs; Design of interactive programs; Logic operations. **9 Hrs**

Unit-II

Geometric Objects and Transformations: Scalars, points, and vectors; Coordinate systems and frames; Modeling a colored cube; Affine transformations; Rotation, translation and scaling; Transformations in homogeneous coordinates; Concatenation of transformations; Interfaces to three-dimensional applications. **9 Hrs**

Unit-III

Viewing and Lighting : Classical and computer viewing; Viewing with a computer; Positioning of the camera; Simple projections; Projections in OpenGL, Hidden surface removal; Parallel-projection matrices; Perspective-projection matrices.

OpenGL: Introduction to OpenGL; Programming two-dimensional Application; The OpenGL API; Primitives and Attributes; Color; Control Functions. **7 Hrs**

Unit-IV

Basic Raster Graphics Algorithms for drawing 2D primitives : Scan converting lines, circles, Filling Rectangles, Polygons; Clipping in a raster world; Clipping lines, polygons; Anti-aliasing 7 Hrs

Unit-V

Lighting and Shading: Light and matter; Light sources; The Phong lighting model. Representing Curves and Surfaces: Parametric Cubic Curves – Hermite Curves, Bézier Curves. 7 Hrs

Conduction of Practical Sessions: Practical Sessions to be held with the focus of learning Open Source Tools like OpenGL and its API features. For the successful completion of the course, students are expected to undertake project to explore advanced features of Open Source Tools like OpenGL.

Reference Books:

- **1)** Edward Angel, "Interactive Computer Graphics A Top-Down Approach with OpenGL", 5th Edition, Addison-Wesley, 2008
- **2)** James D Foley, Andries Van Dam, Steven K Feiner & John F Hughes, "Computer Graphics Principles and Practice", 2nd Edition, Addison-Wesley, 1997.
- **3)** Edward Angel & Dave Shreiner, "Interactive Computer Graphics A Top-Down Approach with Shader-Based OpenGL", 6th Edition, Addison-Wesley, 2012

- 4) F.S. Hill, Jr., "Computer Graphics Using OpenGL", 2nd Edition, Pearson Education, 2005
- 5) Donald Hearn and Pauline Baker, "Computer Graphics- OpenGL Version", 2nd Edition, Pearson Education, 2003

18UCSE711	Internet of Things	(2-0-2) 3

Contact Hours: 39 (26T + 13L)

Course Learning Objectives (CLOs): This course provides the basic understanding of IoT technology, communication protocols, sensor networks and its applications. It focuses on setting up IoT ecosystem to implement use cases by applying the key concepts of IoT.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to	POs(1-12)/	PSOs (13-16)
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Explain the working of IoT and its enabling technologies.	-	5	1, 12
CO-2	Explain the use cases of IoT and the use of sensors & actuators in IoT ecosystem.	-	5	1, 12
CO-3	Compare and contrast IoT & M2M and explain the generic design methodology for IoT system.	-	5, 13	1, 12
CO-4	Develop IoT applications using Arduino by making use of sensors and modules.	13	14	1, 5, 9, 15

CO-5	Develop IoT Raspberry Pi making use of s	applications using microcontroller by ensors and modules.	13	14	1, 5, 9, 15

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	1.0	-	-	-	1.6	-	-	-	1.0	-	-	1.0	2.7	2.0	1.0	-

Pre-requisites: Knowledge of Programming and Basics of Computer Networking

Contents:

Unit-I

Introduction to Internet of Things (IoT): Introduction, Physical and Logical Design of IoT, IoT Enabling Technologies, IoT levels and Deployment templates **7 Hrs**

Unit-II

Domain Specific IoTs: Introduction, Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, Health &Lifestyle

IoT Sensors and Actuators: Introduction, IoT sensors, RFID, Video Tracking, IoT Actuators 8 Hrs

Unit-III

IoT and M2M: Introduction, M2M, Difference between IoT and M2M, SDN and NFV for IoT

IoT Platforms Design Methodology:Introduction, IoT Design Methodology, CaseStudy on IoT System for Weather Monitoring7 Hrs

Unit-IV

Arduino Programming:Features of Arduino, Arduino UNO, Arduino IDE, Arduino sketch structure, Arduino function libraries, Blinking LED example; Operators, control statements, loops, arrays, string, interrupts, Traffic Control System example

Integration of Sensors, Actuators and modules with Arduino: Sensor Types, Sensor Interface with Arduino, Interfacing DHT, LM35, LDR, Accelerometer and HC-SR04 sensors with Arduino; Actuators, Types of Motor Actuators, Servo motor, Servo library on Arduino; HC05 Bluetooth module, Features, Interfacing HC05 with Arduino, Controlling LED using Bluetooth; ESP8266 wifi module, Features, Send LM35 sensor data to cloud using wifi module

Unit-V

Raspberry Pi: Introduction, Specifications, Basic Architecture, Pin configuration, Blinking LED example; Capture image using Raspberry Pi

Implementation of IoT with Raspberry Pi: Temperature dependent auto cooling system; interfacing DHT, LM35, LDR, Accelerometer and HC-SR04 sensors with Raspberry Pi; Send LM35 sensor data to cloud using wifi module. 2L + 6P Hrs

Conduction of Practical Sessions:

Practical sessions shall include experiments on the following:

- 1) Use of Arduino board and coding to blink built-in as well as external LEDs
- Interfacing temperature, humidity, soil moisture, light intensity, accelerometer, ultrasonic and obstacle detection sensors with Arduino and displaying the results
- 3) Connecting modules like Bluetooth and Wi-Fi to Arduino and sending the sensed data to cloud for storage and analytics.
- 4) Use of Raspberry Pi as a surveillance system

Reference Books:

- 1) Arshdeep Bahga, Vijay Madisetti ,"Internet of Things A Hands-on Approach", Universities Press, 2015
- 2) Ammar Rayes, Samer Salam, "Internet of Things From Hype to Reality The Road to Digitalization", Second Edition, , Springer Nature Switzerland AG 2017, 2019

Additional References:

3) NPTEL course on "Introduction to internet of things" by Prof. Sudip Misra

VIII Semester

18UCSE808

Data Science

(3-0-0) 3

Contact Hours: 39

Course Learning Objectives (CLOs): This course is a 3 credit undergraduate course focusing on the data and types, data preprocessing. The details of R language are discussed to enable the students to perform data analytics. It also discusses the supervised and unsupervised learning.

Course Outcomes (COs):

Description of the Course Outcome:	Mapping to	POs(1-12)/	PSOs (13-16)
At the end of the course the student will be	Substantial	Moderate	Slight
able to:	Level (3)	Level (2)	Level (1)

CO-1	Explain the flow process for processing data science problems and the data types.	-	1, 2	13
CO-2	Apply the preprocessing methods to the raw data to make it available for analysis.	1, 2	-	-
CO-3	Use the R language to perform the data visualization and the analysis using fundamental statistical technques.	3	-	12
CO-4	Explain the machine learning technques.	-	1, 2	13
CO-5	Explain the unsupervised learning technques.	-	1, 2	13

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	2.3	2.3	3.0	-	-	-	-	-	-	-	-	1.0	1.0	-	-	-

Pre-requisites: Knowledge of Statistics

Contents:

Unit-I

Introduction: Evolution, Roles, Stages in Data Science Project, Applications, Data Security and Privacy Issues

Data: Data types - Structured and Unstructured, Challenges with Unstructured data,Social media data, Multi modal data, Data Storage and Presentation7 Hrs

Unit-II

Data Preprocessing: Cleaning, Integration, Transformation, Reduction, Discretization.

Techniques: Correlation, Regression. Exploratory Analysis.

7 Hrs

Unit-III

R Language: Basics, Control structures, Functions, Impoting Data.
 Graphics and Data Visualization: Installing gglot2, Loading the data, Plotting the Data.
 Statistics and Machine Learning: Basic Statistics, Regression, Clustering 9 Hrs

Unit-IV

Machine Learning: Introduction, Regression, Classification, Gradient Descent. 8 Hrs

Unit-V

Unsupervised Learning: Introduction, Agglomerative Clustering, Reinforcement Learning 8 Hrs

Reference Books:

- 1) Chirag Shah, "A Hands on Introduction to Data Science", Cambridge University Press, 2020
- 2) Laura Igual and Santi Segui, "Introduction to Data Science", Springer International Publications, 2017
- **3)** Richord Cotton "Learning R", O'Reilly Publications, 2013.

18UCSE809

Blockchain Technology

(3-0-0) 3

Contact Hours: 39

Course Learning Objectives (CLOs): This course focuses on understanding emerging abstract models for Blockchain Technology and familiarizes the functional/operational aspects of the crypto currency ecosystem. Identify major research challenges and technical gaps existing between theory and practice in the crypto currency domain.

Course Outcomes (COs):

Descr	iption of th	ne Co	urse	Ou	tco	me	:		Ма	app	ing t	o PC)s(1-	12)/ F	PSOs	(13-1	6)
At the able to	At the end of the course the student will be able to:										antia I (3)	I M	oder evel	ate (2)	SI Lev	ight vel (1)
CO-1	Demonst chain co tools/tech	t rate the basics of Block oncepts using modern inologies.								-			3, 4,	5	1,13		
CO-2	D-2 Analyze the role of block chain applications in different domains including cyber security.									-			3, 5	;	-		
CO-3	Evaluate the usage of Block chain implementation/features for the given scenario.						in ne		-			1, 3,	4		14		
CO-4	Exemplify its impact	y the on th	usage e eco	e of onor	bitc ny.	oin	s ar	nd		3	1		-		-		
CO-5 Analyze the application of specific block chain architecture for a given problem.								ic en	3				2		6		
POs	/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Маррі	ng Level	1.0	2.4	1	2	1	-	-	-	-	-	-	-	1.0	1.0	-	-

Pre-requisites: Knowledge of any Object Oriented Programming language and Data Structures.

Contents:

Unit-I

Introduction: Introduction to Blockchain, How Blockchain works, Blockchain vs. Bitcoin, Practical applications, public and private key basics, pros and cons of Blockchain, Myths about Bitcoin. **7 Hrs**

Unit-II

Blockchain Architecture and Types: Architecture, versions, variants, use cases, Life use cases of Blockchain, Blockchain vs. shared Database, Introduction to crypto currencies, Types, Applications. 8 Hrs

Unit-III

Blockchain Data Structures and Working: Concept of Double Spending, Hashing, Mining, Proof of work. Introduction to Merkel tree, Privacy, payment verification, Resolving Conflicts, Creation of Blocks. 8 Hrs

Unit-IV

Bitcoins: Introduction to Bitcoin, key concepts of Bitcoin, Merits and Demerits Fork and Segwits, Sending and Receiving bitcoins, choosing bitcoin wallet, Converting Bitcoins to Fiat Currency. **8 Hrs**

Unit-V

Ethereum: Introduction to Ethereum, Advantages and Disadvantages, Ethereum vs. Bitcoin, Introduction to Smart contracts, usage, application, working principle, Law and Regulations. Case Study. **8 Hrs**

Reference Books:

- 1) Arshdeep Bikramaditya Signal, Gautam Dhameja, Priyanshu Sekhar Panda "Beginning Blockchain: A Beginner's Guide to Building Blockchain Solutions" Apress Publications, 2018.
- **2)** Arshdeep Bahga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", VPT Publications, 2017.
- **3)** Swan Melanie, "Blockchain: Blueprint for New Economy", O'Reilly Publications, 2018.
- 4) Aravind Narayan, Joseph Bonneau, Edward Felten at al "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016

5) Daniel Drescher, "Blockchain Basics: A Non-Technical Introduction in 25 Steps", Apress Publications, 2017.

Additional References:

- 1) https://www.guru99.com/blockchain-tutorial.html
- 2) https://developer.ibm.com/technologies/blockchain/gettingstarted/

PG Courses

18P	CSEE125	
-----	---------	--

Research Methodology and IP

(3-0-2) 4 Credits

Contact Hours: 39T+26L

Course Learning Objectives

- To facilitate and enable students to learn the art of developing the most appropriate methodology for research studies.
- To make the students familiar with the art of using different research methods and techniques.
- To make students to familiar with IPR

Course Outcomes (POs):

Descrip	tion of the Course Outcome:	Mapping	Mapping to POs(1,11)				
At the e	end of the course the student will be able						
to:		Substan	Modera	Slight			
		tial	te	evel (1)			
		evel (3)	evel (2)				
CO 1	Formulate the research problems.	-	1	-			
CO 2	Comprehend and explain literature survey of chosen domain	3	-	-			
CO 3	Write the technical project report/proposals	2	-	-			
CO 4	Explain Patenting, Copyright, Technology transfer and innovations.	-	4	-			
CO 5	Practice research ethics for lifelong learning	-	5,6	-			

Mapping Level:

POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6
Mapping Level	2	3	3	2	2	2

Pre-requisites: Knowledge of Analytical and Logical thinking, and English writing skills.

Course Contents:

1 Research Methodology: An Introduction: Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, Problems Encountered by Researchers in India,

Defining the Research Problem: What is a Research Problem?, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration

Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs,

Sampling Design: Census and Sample Survey, Implications of a Sample Design, Steps in Sampling Design, Criteria of Selecting a Sampling Procedure, Characteristics of a Good Sample Design, Different Types of Sample Designs, How to Select a Random Sample?, Random Sample from an Infinite Universe, Complex Random Sampling Designs Methods of Data Collection Collection of Primary Data, Observation Method, Interview Method, Collection of Data through Questionnaires, Collection of Data through Schedules, Difference between Questionnaires and Schedules, Some Other Methods of Data Collection, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method

- 2 Quantitative Methods: Statistics: Probability & Sampling distribution; Estimation, Hypothesis testing & application; Chi-square Test, The research proposal in quantitative and qualitative research, Contents of a research proposal, Preamble/introduction, The problem, Objectives of the study, Hypotheses to be tested, Study design, The setting, Measurement procedures, Ethical issues. Sampling, Analysis of data, Structure of the report, Problems and limitations Case Study
- 3 Introduction to IPR : Copyright and Related Rights, Industrial 4 Hrs Property ;Patents, Industrial Designs, Trade Marks, Geographical Indications, Layout Designs/Topographies, Integrated Circuits, Trade Secrets, Protection of New Plant Varieties, USPTO, Justia, ACM in the context of IPR

16 Hrs

4 Computer Applications: Latex and Word Processor tools for Thesis 4 Hrs writing & Scientific editing tools. Indexing, Citation and References in IEEE format.

List of Assignments:

- 1. Identify a research problem.
- 2. Conduct a thorough Literature review.
- 3. Identify technique for data collection and interpretation.
- 4. Writing a research proposal and Indexing, Citation and References in IEEE format.

5. Identifying typical issues in IPR real time using USPTO, Justia, ACM references

6. Use Latex and other tools for report writing.

Reference Book

- 1. Research Methodology Methods and Techniques by C R Kothari, Second Revised Edition, 2004 New Age International (P) Limited, Publishers
- Research Methodology: A Step by Step Guide for beginners", Ranjit Kumar, 3nd Edition. 2011 SAGE Publications India Pvt. Ltd.
- 3. Intellectual Property Rights-Law And Practice The Institute Of Company Secretaries Of India

Website:

https://www.justia.com

https://www.uspto.gov/ https://www.acm.org

18PCSEE226	Data Science	(3-0-2) 4

Course Learning Objectives: This course is at undergraduate level for 52 contact hours with focus on following learning objectives:

- To understand concepts underlying Data Science.
- To understand big data and its applications to various fields.
- To Manage Big data without SQL.
- To Work with R tool for statistical analysis.
- To Analyse the social networks.

Course Outcomes: At the end of this course, students will be able to demonstrate the following course outcomes.

CO #	Description of Course Outcomes	Substantial	Moderate	Low
CO 1	Differentiate between conventional SQL	1		
	query language and NoSQL basic concepts			
CO 2	Describe big data and its presence in various	1		
	fields.			
CO 3	Perform map-reduce analytics using	3		
	Hadoop.			
CO 4	Use R tool to carry out basic statistical	3,5		
	modeling and analysis.			
CO 5	Knowledge of social network analysis and its	1		
	applications.			

РО	1	2	3	4	5	6	7	8	9	10	11
Mapping Level	3		3		3						

Pre-Requisites: Knowledge of

- RDBMS,
- Statistics, and
- Graph Theory

Course Contents:

1. INTRODUCTION TO DATA SCIENCE:

Data science process – roles, stages in data science project – working with data from files – working with relational databases – exploring data – managing data – cleaning and sampling for modeling and validation, Introduction to NoSQL.

- 2. **BIG DATA AND ANALYTICS:** Distributed file system–Big Data and its 8 Hrs importance, Four Vs, Drivers for Big data, Big data analytics, Big data applications. Algorithms using map reduce.
- HADOOP AND HADOOP ARCHITECTURE: Big Data Apache Hadoop 8 Hrs & Hadoop EcoSystem, Moving Data in and out of Hadoop – Understanding inputs and outputs of MapReduce.

8 Hrs

- MODELLING METHODS: Choosing and evaluating models, Mapping 10 Hrs problems to machine learning, Evaluating clustering models, Validating models, Cluster analysis – K-means algorithm, Naïve Bayes, Memorization Methods – Linear and logistic regression.
- INTRODUCTION TO R: Reading and getting data into R, Ordered and unordered factors, Arrays and matrices, Lists and data frames, Reading data from files, Probability distributions, Statistical models in R, Manipulating objects, Data distribution.
- 6. **MINING SOCIAL-NETWORK GRAPHS:** Social networks as graphs, 10 Hrs Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs.

Reference Books:

- 1. Tom White, "Hadoop: The definitive Guide", 3rd edition, O'Reilley, 2012
- 2. Eric Sammer,"Hadoop operations", O'Reilley, 2012
- 3. Vignesh Prajapati,"Big data analytics with R & Hadoop",SPD 2013
- 4. Pang-Ning Tan, Michael Steinbach, Vipin Kumar "Introduction to Data Mining" Addison Wesley,2005
- 5. Jure Leskovee, Anand Rajaraman, Jeff Ullaman" Mining of Massive Datasets", 2nd edition Cambridge University, 2015

18PCSEE227

Machine Learning

(3-0-2) 4 Credits

Contact Hours: 39T+26L

Course Learning Objectives

This course focuses on the basic principles of machine learning and design machine learning system with proper exposure to appropriate programming language, mathematical modelling, and Architectural strategy of ML, knowledge representation and Industry relevant tools / Library for developing intelligent systems.

Course Outcomes:

		Mapping t	to POs/ PSC	Ds
At th	Description of the Course Outcome: e end of the course the student will be able to:	Substantial Level (3)	Moderate Level (2)	Low Leve I (1)
CO 1	Design an appropriate knowledge model for a given problem scenario using concept learning	1,2,3,4	-	-
CO 2	Design an appropriate knowledge model for a given problem scenario using neural networks	1,2,3,4	-	-
CO 3	Design an appropriate knowledge model for a given problem scenario using Bayesian technique	1,2,3,4	-	-
CO 4	Write a program in any appropriate language for a	1,2,3,4	-	-
CO 5	Evaluate the effectiveness of a given learning	1,2,3,4	-	-
CO 6	Explore the standard dataset available in public	1,2,3,4	-	-
CO 7	Conduct experiments and develop a proper dataset capturing real time features in a given domain	1,2,3,4	-	-

Mapping Level

POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6
Mapping Level	3	3	3	3	-	-

Pre-requisites: The students meet the following prerequisites:

- Basic programming skills
- Algorithm design
- Basics of probability & statistics

Course Contents:

1 Introduction, Concept Learning And Decision Trees: Learning 09 Hrs Problems–Designing Learning systems, Perspectives and Issues– Concept Learning–Version Spaces and Candidate Elimination Algorithm–Inductive bias–Decision Tree learning–Representation– Algorithm–Heuristic Space Search.

- 2 Neural Networks And Genetic Algorithms: Neural Network 10 Hrs Representation– Problems–Perceptrons–Multilayer Networks and Back Propagation Algorithms– Advanced Topics–Genetic Algorithms–Hypothesis Space Search–Genetic Programming – Models of Evolution and Learning.
- 3 **Bayesian And Computational Learning:** Bayes Theorem–Concept **10 Hrs** Learning–Maximum Likelihood–Minimum Description Length Principle–Bayes Optimal Classifier–Gibbs Algorithm–Naïve Bayes Classifier–Bayesian Belief Network–EM Algorithm–Probably Learning–Sample Complexity for Finite and Infinite Hypothesis Spaces–Mistake Bound Model.
- 4 Instant Based Learning And Learning Set Of Rules: K- Nearest 10 Hrs Neighbor Learning–Locally Weighted Regression–Radial Basis Functions–Case-Based Reasoning–Sequential Covering Algorithms–Learning Rule Sets–Learning First Order Rules– Learning Sets of First Order Rules–Induction as Inverted Deduction– Inverting Resolution.

Additional contents beyond the syllabi:

- Exposure to research avenues in the field of Machine Learning.
- Seminars on the research work done using Machine Learning algorithms.
- Certification course

LABORATORY WORK

(The following tasks can be implemented in a language of your choice or any tools available)

- 1. Implement the **CANDIDATE-ELIMINATION** algorithm. Show how it is used to learn from training examples and hypothesize new instances in Version Space.
- 2. Implement the **FIND-S** algorithm. Show how it can be used to classify new instances of target concepts. Run the experiments to deduce instances and hypothesis consistently.
- 3. Implement the **ID3** algorithm for learning Boolean–valued functions for classifying the training examples by searching through the space of a Decision Tree.
- 4. Implement the **Genetic algorithm**.
- 5. Design and implement **Naïve Bayes** Algorithm for learning and classifying **TEXT DOCUMENTS**.

Reference Books:

1. Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (INDIAN EDITION), 2013.

- 2. EthemAlpaydin, "Introduction to Machine Learning", 2nd Edition, PHI Learning Pvt. Ltd., 2013.
- 3. T. Hastie, R. Tibshirani, J. H. Friedman, "The Elements of Statistical Learning", Springer; 1st edition, 2001.
- 4. Pattern Recognition and Machine Learning by Christopher M Bishop, Springer, 2016

18PCSEE231

Internet of Things

(3-0-2) 4

Contact Hours: 39T+26L

Course Learning Objectives:

This course provides basic insights on architecture, communication protocols, sensor networks and applications of IoT. It also focuses on implementation of various use cases of IoT with Arduino and Raspberry Pi.

Course Outcomes:

1	Description of the Course Outcome:	Mapping to POs/ PSOs				
At the	end of the course the student will be able	Substantial	Moderate	Low		
	to:	Level (3)	Level (2)	Level (1)		
CO 1	Explain the need for IoT and its application	-	3	6		
CO 2	Explain various networking and	-	3	1,6		
CO 3	Explain the architecture and applications	3	-	1,6		
CO 4	Explain the concepts of M2M	-	3	6		
CO 5	Demonstrate use cases of IoT using	-	3,4	6		

Mapping Level:

POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6
Mapping Level	1.0	-	2.2	2	-	1.0

Pre-requisites: Computer Networks basics and knowledge of microcontrollers and microprocessors.

Course Contents:

- Introduction to IoT: What is IoT; IoT overview; Applications of IoT; Sensing- what is a sensor and transducer, sensor types; Actuation- what are actuators, actuator types
 Mathematical Mat
- IoT Networking: Basics of IoT networking; components of IoT; service 02 oriented architecture of IoT
 Hrs
- IoT Protocols: IoT Protocols-MQTT, SMQTT, CoAP, XMPP, AMQP;
 Communication Protocols- IEEE 802.15.4, ZigBee, 6LoWPAN, HART,
 Hrs Bluetooth, Zwave, ISA 100.11 A
- WSNs and UAV Networks : WSNs- what is wireless sensor network, concepts and challenges, node behavior; Applications of WSNs- 06 Target/Object Tracking, Agriculture; UAV Networks- features, Hrs constraints, advantages, topologies
- 5. M2M Communication and Interoperability in IoT: M2M communication-concepts, features, applications, node types, M2M area management; Interoperability in IoT- challenges, types of interoperability Hrs (ex: syntactic and device interoperability)
- 6. Arduino Microcontroller and Sensor Integration: Arduino Microcontroller-what is Arduino, arduino programming, features, arduino 05 boards, arduino IDE, blinking LED; Sensor Integration- integration of Hrs various sensors with arduino
- Implementation of IoT with Raspberry Pi: Raspberry Pi- architecture, components, blinking LED, image processing with Raspberry Pi; Interfacing various sensors with arduino
 Mathematical Mathematical Structure (1998)
 Mathematical Structure (1998)
- IoT with Cloud and Data Processing: Sending collected sensor data to cloud using recent cloud services like ThingSpeak; IBM bluemix and processing the data using IBM Watson APIs
 06 Hrs

Reference Books:

- 1. Pethuru Raj, Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms and Use Cases", CRC Press, 2017
- 2. ArshdeepBahga, Vijay Madisetti, "Internet of Things A Hands-on Approach", Universities Press, 2015
- 3. Research Papers.

Laboratory Assignments:

- 1. Programs to blink LED (internal/external) using Arduino / Raspberry Pi.
- CO-6,7 2. Programs to interface sensors (LM35, DHT, LDR, Ultrasonic) using Arduino / Raspberry Pi. CO-1, 6,7
- 3. Programs interface Bluetooth/ Wi-fi modules to Arduino / Raspberry Pi and send sensor data to cloud using cloud APIs. CO-3,6,7
- 4. Programs to explore protocols like MQTT, CoAP, and ZigBee using Arduino / Raspberry Pi. CO-3,6,7
- 5. Programs to send sensor data to cloud and perform data analytics using platforms like ThingSpeak / IBM Watson APIs. CO-6,7,8
- 6. Programs to realize IoT case studies like Home Automation, Smart Agriculture, Smart Cities, etc. CO-6,7

18PCSEE329	Natural Language Processing and Test	(3-0-2) 4
	Mining	

Course Learning Objectives: This course will enable student to

- Process the raw text by applying NLP techniques.
- Categorize and tag the information.
- To apply machine learning algorithms for text analysis.

Course Outcomes: At the end of this course, students will be able to demonstrate the following course outcomes.

СО	Description of Course Outcomes	Substanti	Mod	Lo
CO 1	Understand approaches to syntax and semantics in NLP.	-	9	-
CO 2	Understand approaches to discourse, generation and summarization within NLP	3	-	-
CO 3	Understand machine learning techniques used in NLP, including hidden Markov models and grammars	-	2	5

CO 4	To understand the basic issues and types of text mining.	3	4	-
CO 5	Understand existing classification/clustering algorithms in terms of features extraction.	3	2,5	4

РО	1	2	3	4	5	6	7	8	9	10	11
Mapping Level	-	2	3	1.5	1.5	-	-	-	2	-	-

Pre-Requisites: Basic Probability and Statistics.

Knowledge of Machine learning.

Course Content

- Introduction: Basics of Statistical Natural Language Processing, 10 Hrs
 Mathematical Foundations Elementary Probability Theory, Essential Information Theory, Parts of Speech and Morphology, Phrase Structure, Looking at Text & Marked-up Data.
- Words: Collocations, Statistical Inference: n -gram Models over Sparse 10 Hrs
 Data-Bins: Forming Equivalence Classes, Statistical Estimators, Combining Estimators, Word Sense Disambiguation- Methodological Preliminaries, Supervised & Unsupervised Disambiguation, Dictionary-Based Disambiguation.
- Grammar: Markov Models, Hidden Markov Models, HMMs: 12 Hrs
 Implementation, Properties, and Variants Part-of-Speech Tagging-The Information Sources in Tagging, Markov Model Taggers, Hidden Markov Model Taggers, Transformation-Based Learning of Tags, Other Methods, Other Languages, Tagging Accuracy and Uses of Taggers
- Introduction to Text Mining: Overview of text mining, General 08 Hrs
 Architecture, Core Operations, Preprocessing, Document classification, Information extraction, Textual information to numerical vectors- Document standardization, tokenization, lemmatization, vector generation ,evaluation performance and recent trends like sentiment analysis
- 5 Text Categorization: Feature Selection Decision Tree Classifiers, Rule- 12 Hrs
 based Classifiers, Probabilistic and Naive Bayes Classifiers, Linear
 Classifiers. Classification of Linked and Web Data, Word and Phrase-based

Clustering, Supervised and Unsupervised Clustering, Text Summarization Techniques, Latent Semantic Indexing, Probabilistic Latent Semantic Indexing.

Reference Books:

- 1. Foundations of Statistical Natural Language Processing by, <u>Christopher</u> <u>Manning</u>, MIT Press, July 1999.
- 2. Sholom Weiss, Nitin Indurkhya, Tong Zhang, Fred Damerau "The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data", Springer, paperback 2010.
- 3. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, Pearson Education India,2nd edition (2013).

