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Abstract
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1.Introduction
Zadeh[10] developed the fundamental idea of fuzzy sets.
Fuzzy topology was first introduced by C.L.Chang[6]. The
theory of FTS was developed by several scholars. The concept
of b-open sets in general topology was first developed by
Andrejevic[1].
Jenifer and Megha introduced the fsgb-closed sets concepts in
7] and also the concept of fsgb-continuous , fsgb-irresolute,
“®Wb-open and fsgb-closed mappings in FTS[8]. The
~development of FTS has been aided by numerous researchers,
including P. Sundaram, K. K. Azad, M. N. Mukharjee, and
others, The objective of this article is introduce and investigate
some stronger  forms of fuzzy strongly generalized b-
continuous functions namely strongly fsgb-continuous
Peffcc_ﬂy fsgb-continuous and completely fsgb-continuous
mappings in FTS -

2. Preliminaries

a'II;l(liroughout this study(L,7),(M, o) and (N,y)(or simply LM

vclosﬁfg are fuzzy topological spaces(in-short as fis). The

- are deng interior and compliment of a fuzzy subsct Pof (L)
enoted by CI(P),Int(P) and P* respectively.

2. [ yE}
’ OPIeI? ef;imtmn [:.3] A fuzzy set P in a fis L is called fuzzy b-
| Pensel(b-08) iff P < (IneCi(P) v CUnt(P))-

22 Defini . T
B Definition [3] Fuzzy b-interior and fuzzy b-closure of a
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Fuzzy sct Iis given by
(i) bInt(7) = v[Q: Q is a fb-open set of Land P = Q}.

(if) bCI(P) = A{R: It is a fo-closed set of L and R = PJ.
is called a fsgb-

2.3Dcfinition [7]A fuzzy sct P in a fis L
p<Q@andQis

closed set(fsgb-CS) if bCI(P) < Q, whenever
fuzzy generalized open set(fg-OS) in L.
{Pina fts L is called 2 fsgb-

2.4Definition [7] A fuzzy sc
p>Qand Qis

open set(fsgb-0S) if bint(P) = Q, whenever
fg-0SinL.

2.5Definition Let L, M be 2 FTS . A mapping g:L—Mis
known as

i)f-continuous map(in short f-CN map)[3] if g~*(P) is fuzzy-
0S in L, for every f-OS P of M. ’

ous map(in short fc-CN map)[9] if

ii)f-completely continu
ry f-OS Pin M.

g~1(P) is fuzzy regular open set inL, foreve
iii) f-perfectly continuous map(in short fp-CN map)[3] if
g~ 1(P) is {-OS and f-CS in L , for every f-OS P in M.

iv) fuzzy strongly generalized b-continuous(in short fsgb- CN
map)[7] if g~*(P) is fsgb-CS in L, for every f-CS P in M.

) Fuzzy strongly generalized b-irresolute(in short fsgb-irr)[7]
if g~1(P) is fsgb-CS in L for every fsgb-CS P in M.

3. Strongly Fsgb-continuous mappings in FTS.

Defintion3.1: A mapping g:L—= M is strongly fsgb-
continuous (in short strongly fsgb- CN) if and only if the
inverse of every fsgb-OS in M is {-OS in L.

Theorem3.2: A mapping g: L — M is strongly fsgb- CN map
if and only if the inverse of every f5gb-CS in M is {-CS in L.

Proof: Consider that g is strongly tsgb- CN map. Let P be
fsgb-CS in M. Then 1-P is fsgb-OS in L.As g is strongly fsgb-
CN , ¢7*(1—=P) is fOS in L Andg™'(1-P)=1-
g 1(P),s0 g (P)is f-CSin L,

Conv_crscly, consider that the inverse of every fsgb-CS in M is
f-CS in L. ,L.ct Q be f5gb-O8S in M, then 1-Q is fsgb-CS in M.
By proposition, g"'(1 = P) is -CSin L, And g~*(1 - Q) =
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1. INTRODUCTION

In recent years, many scientist and researchers have paid special interest to the fractional
calculus as it has abundant applications in various branches of science and engineering such
as automatic control systems, networks, biology, long transmission lines, medicine, eco-

' nomics, biology, traflic model, signal processing ,informatics, ete [1]. Fractional differential
“equations are the generalization of ordinary differential equations to an arbitrary order.
The development of fractional differential operators found in [2]. The fractional delay dif-
ferential equations (FDDES) are the special kind of delay differential equations where the
action on a process not only depending on the current state but also on its previous state.
It is because of their nonlocal properties and complexity in nature, obtaining analytical
solutions for such FDDE is difficult task. Therefore constructing the efficient numerical
methods plays very essential role for the appro.\:x.mate solut10n§ of ]:'.‘DDEsl.l \ZVav;ale't theor_);
is relatively new and emerging area in the z_\pplled 111.-(1themat1cal 1esee}rc [.3] t is one 21
" the powerful tools for obtaining the numerical solutions and has applications in optim
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