Lab Component

of

First Semester Engineering Mathematics

as prescribed by Visvesvaraya Technological University, Belagavi

Compiled by:

Dr. Ramananda H. S. Dr. K. Sushan Bairy
St Joseph Engineering College, SOAS, REVA University,
Mangaluru, INDIA. Bengaluru, INDIA.

Dr. Smita S. Nagouda Dr. Madhukar Krishnamurthy
CHRIST(Deemed to be University), BMS College of Engineering,
Central Campus, Bengaluru, INDIA. Bull Temple Road, Bengaluru, INDIA.

Dr. Chandra Shekara G. Mr. Sonam Kumar
BMS College of Engineering, AMC Engineering college,

Bull Temple Road, Bengaluru, INDIA. Bannerghatta Road, Bengaluru, INDIA.

Contents

1. Introduction

I Basics of Python

IT Programming Structure

Lab 1. 2D-Plots of Cartesian and Polar Curves

Lab 2. Finding Angle Between Two Polar Curves, Curvature and Radius of Curvature
Lab 3. Finding Partial Derivatives and Jacobian

Lab 4. Taylor Series Expansion and L’Hospital’s Rule

Lab 5. Solution of First Order Differential Equations and Plotting the Solution Curve

Lab 8. Numerical Solution of System of Equations, Test for Consistency and Graphical
Representation of the Solution.

Lab 9. Solution of Linear Equations by Gauss-Seidel Method

Lab 10. Compute Eigen Value and Corresponding Eigen Vectors, Find the Dominant Eigen
Value and Corresponding Eigen Vector by Rayleigh Power Method.
Computer Science and Engineering Stream

Lab 6. Finding GCD Using Euclid’s Algorithm

Lab 7. Solve Linear Congruence of the Form ax = b(modn)

Electrical & Electronics Engineering Stream

Lab 6. Progamme to Compute Area, Volume and Center of Gravity

Lab 7. Evaluation of Improper Integrals

Mechanical & Civil Engineering Stream

Lab 6. Solution of Second Order Ordinary Differential Equation and Plotting the Solution
Curve

Lab 7. Solution of Differential Equation of Oscillations of Spring with Various Load

Instructions and method of evaluation

1. In each Lab student have to show the record of previous Lab.

2. Each Lab will be evaluated for 15 marks and finally average will be taken for 15
marks.

3. Viva questions shall be asked in labs and attendance also can be considered for
everyday Lab evaluation.

4. Tests shall be considered for 5 marks and final Lab assessment is for 20 marks.

5. Student has to score minimum 8 marks out of 20 to pass Lab component.

I. Introduction to PYTHON

https://drive.google.com/file/d/1gVG2IJ8BI jhYDwDx6jWIns59h9dGOGVi/viewTusp=
share_link

II. Programming Structures

Conditional structure

What is conditioning in Python?

e Based on certain conditions, the flow of execution of the program is determined
using proper syntax.

e Often called decision-making statements in Python.

How to use if conditions?

if statement — for implementing one-way branching

- if..else statements —for implementing two-way branching

nested if statements —for implementing multiple branching

if-elif ladder — for implementing multiple branching

#Syntax:

if condition:
statements

Check 1if the given number 1is positive
a=int (input ("Enter an integer: "))
if a>0:

print ("Entered value is positive")

Enter an integer: 5
Entered value is positive

Synatx:
if condition:

else:

#
#
statements 1
#
statements 2

H*

If condition is True- statements 1 will be executed
otherwise - statements 2 will be executed

H*

a=int (input ("Enter an integer: "))
if a>0:

https://drive.google.com/file/d/1gVG2IJ8BIjhYDwDx6jWJns59h9dGOGVi/view?usp=share_link
https://drive.google.com/file/d/1gVG2IJ8BIjhYDwDx6jWJns59h9dGOGVi/view?usp=share_link

print ("Number entered is positive")
else:
print ("Number entered is negative")

Enter an integer: -5
Number entered is negative

Syntax:
if condition 1:
statements 1
elif condition 2:
statements 2
elif condition 3:
statements 3
else:
statements 4

H O R R R R R R R

H*

If condition 1 is True - Statements 1 will be executed.
else if condition 2 is True - Statements 2 will be executed and so on

+

If any of the conditions is not True then statements in else block is
executed.

Example:

perc=float (input ("Enter the percentage of marks obtained by a student:"

))

if perc >= 75:

print (perc,' % - Grade: Distinction')
elif perc >= 60:

print (perc,' 7 - Grade: First class')
elif perc >=50:

print (perc,"' % - Grade: Second class')
else:

print (perc,' % - Grade: Fail')

Enter the percentage of marks obtained by a student:65
65.0 % - Grade: First class

To check if a number is divisble by 7
numl=int (input ("Enter a number:"))
if (num1’7==0):
print ("Divisible by 7")
else
print ("The given number is not divisible by 7")

Enter a number:45
The given number is not divisible by 7

Conversion Celsius to Fahrenheit and vice-versa:
def print_menu():

print("1. Celsius to Fahrenheit")

print ("2. Fahrenheit to Celsius")

def Far():
c=float (input ("Enter Temperature in Celsius: "))
f=c*x(9/5)+32
print ("Temperature in Fahrenheit: {0:0.2f}".format (£f))

def Cel():
f=float (input ("Enter Temperature in Fahrenheit: "))
c=(£-32)*(5/9)
print ("Temperature in Celsius: {0:0.2f}".format (c))

print_menu ()

choice=input ("Which conversion would you like: ")
if (choice=='1"):

Far ()
elif (choice=='2"):

Cel O

else :print ("INVALID")

1. Celsius to Fahrenheit

2. Fahrenheit to Celsius

Which conversion would you like: 1
Enter Temperature in Celsius: 34
Temperature in Fahrenheit: 93.20

Control flow (Loops)

Loop types:

while loop

- Repeats a statement or group of statements while a given condition is TRUE. It tests
the condition before executing the loop body.

for loop

- Executes a sequence of statements multiple times and abbreviates the code that manages
the loop variable.

nested loops

- You can use one or more loop inside any another while, for or do..while loop.

1. While loop

e Is used to execute a block of statements repeatedly until a given condition is satis-
fied.

e When the condition becomes false, the line immediately after the loop in the pro-
gram is executed

e Syntax:

while expression:
statement (s)

Fibonacci series:
the sum of two elements defines the next
a, b =0, 1 #First step :a=0;b=1 second step:a=1;b=1+0
while a < 10:
a,b=b,a+b
print (a)

Q0 O W N - =

13

Print multiplication table

n=int (input ("Enter the number: "))
i=1
while(i<11):

print(n, 'x',i,'=s"',n*i)

i=i+1

Enter the number: 45

45 x 1 = 45
45 x 2 = 90
45 x 3 = 135
45 x 4 = 180
45 x b = 225
45 x 6 = 270
45 x 7 = 315
45 x 8 = 360
45 x 9 = 405
45 x 10 = 450

break statement

e [t terminates the current loop and resumes execution at the next statement.

The most common use for break is when some external condition is triggered re-
quiring a hasty exit from a loop.

The break statement can be used in both while and for loops.

If you are using nested loops, the break statement stops the execution of the inner-
most loop and start executing the next line of code after the block.

Use of break ststement
i=1
while 1i<6:
print (i)
if i==
break
i+=1

N

Continue statement

e The continue statement rejects all the remaining statements in the current iteration
of the loop and moves the control back to the top of the loop.

e The continue statement can be used in both while and for loops.

i=0
while i<6:
i+=1
if i==
continue
print (i)

(o) @2 I S N T

2. for loop

are used for sequential traversal

it falls under the category of definite iteration

also used to access elements from a container (for example list, string, tuple) using
built-in function range()

Syntax:

for variable_name in sequence
statement_1
statement_2

The range() function
Syntax:

e range(a) : Generates a sequence of numbers from 0 to a, excluding a, incrementing
by 1.

e range(a,b): Generates a sequence of numbers from a to b excluding b, increment-
ing by 1.

e range(a,b,c): Generates a sequence of numbers from a to b excluding b, incre-
menting by c.

#Print numbers from 101 to 130 with a step length 2 excluding 130.
for i in range(101,130,2):
print (i)

101
103
105
107
109
111
113
115
117
119
121
123
125
127
129

One can type the following examples and observe the outputs.

Sum of first n natural numbers
sum=0
n=int (input ("Enter n: "))

for i in range(l,n+1): # i=1, sum=1;

sum=sum+i

print ("Sum of first "

,n,"natural numbers

i=

2, sum=3; i=

" sum)

4,

sum=7,

Multiplication table

n=int (input ("Enter the number"))

for i in range(1l,11):
print(n,'x"',i,'="',n*i)

printing the elements of a list

fruits=['apple', 'banana','cherry', 'orange']
pp y g

for x in fruits:
print (x)

apple

banana
cherry
orange

Exercise:

1. Finding the factors of a number using for loop.

2. Check the given number is prime or not.

3. Find largest of three numbers.

4. Write a program to print even numbers between 25 and 45.

5. Write a program to print all numbers divisible by 3 between 55 and 75.

LAB 1: 2D plots of Cartesian and polar curves.

1.1 Objectives:

Use python
1. to plot Cartesian curves.
2. to plot polar curves.

3. to plot implicit functions.

Syntax for the commands used:

1. Plot y versus x as lines and or markers using default line style, color and other
customizations.

plot(x, y, color='green', marker='o', linestyle='dashed',linewidth=
2 ,markersize=12)

2. A scatter plot of y versus x with varying marker size and/or color.

scatter (x_axis_data, y_axis_data, s=None, c=None, marker=None, cmap
=None ,vmin=None, vmax=None,
alpha=None, linewidths=None,
edgecolors=None)

3. Return num evenly spaced numbers over a specified interval [start, stop]. The
endpoint of the interval can optionally be excluded.

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False,
dtype=None, axis=0)

4. Return evenly spaced values within a given interval. arange can be called with a
varying number of positional arguments.

numpy .arange ([start,]stop, [step, ldtype=None, *, like=None)
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot

1.2 Example: Plotting points(Scattered plot)

importing the required module
import matplotlib.pyplot as plt

[1,2,3,4,6,7,8] # x axis values

[2,7,9,1,5,10,3] # corresponding y axis values
plt.scatter(x, y) # plotting the points

plt.xlabel('x - axis') # naming the x axis
plt.ylabel('y - axis') # naming the y axis
plt.title('Scatter points') # giving a title to my graph
plt.show() # function to show the plot

o]
|

<
]

10

https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot

Scatter points
1[.] -
.
B -
.
E B -
=)
. .
4 4
21 @
.
) I))) I) I
1 2 3 4 5 G 7 B
X - axis

1.3 Example: Plotting a line(Line plot)

importing the required module

import matplotlib.pyplot as plt
X [1,2,3,4,6,7,8] # x axis values

y = [2,7,9,1,5,10,3] # corresponding y axis values
plt.plot(x, y, 'r+--') # plotting the points
plt.xlabel('x - axis')

naming the x axis
plt.ylabel('y - axis') # naming the y axis

function to show the plot

plt.title('My first graph!') # giving a title to my graph
plt.show ()

My first graph!
10 - X
.|'lr 11_
l.i{]
F i i/
B T .-"'r 1 pj
- \ L]
¥ f \
i ! 1
\ 4 i
5 \ ! \
A E - 1]
b= ; 1 f
' i 1 A+
= lr-" 1 -
&
4 . f \ Fa
[L] #
i \ o
\
! \ #
! \ ~
21 4 Vo
[
¥
! ! ! ! ! I I !
1 2 3 4 5 & T
x - axis

1.4 Functions

1. Exponential curve, y = e*

importing the required modules
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-10, 10, 0.001) # x takes the values between -10 and 10
with a step length of 0.001

y = np.exp(x) # Exponential function

plt.plot(x,y) # plotting the points

plt.title("Exponential curve ") # giving a title to the graph

plt.grid() # displaying the grid

plt.show() # shows the plot

Exponential curve

20000 4

15000 4

10000 1

5000 4

T T
-100 -75 -0 -25 00 25 2.0 5 100

2. Sine and Cosine curves

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-10, 10, 0.001)

yl = np.sin(x)

y2=np.cos(x)

plt.plot(x,yl,x,y2) # plotting sine and cosine function together with
same values of x

plt.title("sine curve and cosine curve")

plt.xlabel("Values of x"

plt.ylabel("Values of sin(x) and cos(x) ")

plt.grid ()

plt.show ()

12

sine curve and cosine curve

1.00

0.75 A

0.50 A

0.25 A

0.00 A

—0.25 4

—0.50 4

Values of sin{x) and cos(x)

—0.75 4

—1.00 4

T T T T T T T T T
=100 -7.5 -5.0 =25 0.0 2.5 5.0 7.5 10.0
Values of x

A

simple graph

import matplotlib.pyplot as plt
import numpy as np

X =

plt.
plt.
plt.

plt

plt.

plt.
plt.
plt.

np.linspace(0, 2, 100)

plot(x, x, label='linear') # Plot of y=x a linear curve
plot(x, x**2, label='quadratic') # Plot of y=x"2 a quadric
plot(x, x**3, label='cubic') # Plot of y=x"3 a cubic curve

.xlabel('x label') # Add an x-label to the axes.

ylabel('y label') # Add a y-label to the axes.

title("Simple Plot") # Add a title to the axes.
legend() # Add a legend
show () # to show the complete graph

curve

Simple Plot

B1 — linear
quadratic
— gubic

y label
=%

T T T T T T T
000 025 050 075 100 125 150 175 200
* label

13

1.5 Implicit Function

Syntax:

P

1
1

#

H*

#

lot_implicit(expr, x_var=None, y_var=None, adaptive=True, depth=0,
points=300, line_color='blue', show
=True, **kwargs)

e expr : The equation / inequality that is to be plotted.

e x var (optional) : symbol to plot on x-axis or tuple giving symbol and range as
(symbol, xmin, xmax)

e y_var (optional) : symbol to plot on y-axis or tuple giving symbol and range as
(symbol, ymin, ymax)

e If neither x_var nor y_var are given then the free symbols in the expression will be
assigned in the order they are sorted.

e The following keyword arguments can also be used:

— adaptive: Boolean. The default value is set to True. It has to beset to False
if you want to use a mesh grid.

— depth : integer. The depth of recursion for adaptive mesh grid. Default value
is 0. Takes value in the range (0, 4).

points: integer. The number of points if adaptive mesh grid is not used.
Default value is 300.

— show: Boolean. Default value is True. If set to False, the plot will not be
shown. See Plot for further information.

e title string. The title for the plot.
e xlabel string. The label for the x-axis

e ylabel string. The label for the y-axis

Aesthetics options:

e line_color: float or string. Specifies the color for the plot

.5.1 Plot the following
. Circle: 22+ 42> =5

importing Sympy package with plot_implicit, symbols and Eq functions
only

symbols: used to declare variable as symbolic expression

Eq: sets up an equation. Ex: 2x-y=0 is written as Eq(2*x-y,0)

from sympy import plot_implicit, symbols, Eq

X

%

, y = symbols('x y')
1 = plot_implicit(Eq(x**2 + y*x2, 4),(x,-4,4),(y,-4,4),
title= 'Circle: $x"2+y~2=4%') # r= 2

14

Circle: x* + y* =4
= 4q

3_
1_
Y U
N -1 A
=
=3
—4
2. Strophoid: y*(a —x) = 2*(a+x),a >0
p3= plot_implicit(
Eq((y**2)*(2-x), (x*x2)*(2+x)), (x, -5, 5), (y, -5, 5),
title= 'Strophoid: $y~2 (a-x)=x"2 (a+x), a> 0$') # a=2
Strophoid: $y~2 (a-x)=x"2 (a+x). a= 0
e
4 4
21
S
! -:-. E':l' - ! !
—4 2 N 2 4
-7 1
—4 "_.
3. Cissiod: y*(a—x)=123,a >0

15

p4d=plot_implicit (
Eq((y**2)*(3_x) ,X**3) y(X5_2:5) ,(Y3_515)) # a=3

=
'q' T _,l'l
.'Il
-'Ir.
._.I'
2 A
o
I I E ! ! ! I |
-2 -1 1 ~.1 2 3 4 5
~ ;
N
-7 |
"'\.1‘.
"-.__
\
-4 \
4. Lemniscate: a?y? = 2?(a® — 2?)
p5=plot_implicit (
Eq(4*(y*x2) ,(x**2)*(4-x**2)) ,(x,-5,5) ,(y,-5,5)) # a=2
=
4 -
7 4
.""F-‘__-\-q- _.-'"--- ___HH\"
|Il -h‘"\- . - 1
—4 - S 2
" - \
-7 4
-4 A

16

5. Folium of De-Cartes: 2° + 33 = 3azy

p6=plot_implicit(
Eq(x**3+y#**x3,3*2*x*xy) ,(x,-5,5) ,(y,-5,5)) # a=2

4 -
\ |
""--\._____ 'll .
T T — G T T
-4 -2 D 2 4
|
_2 —
_4 —

1.6 Polar Curves

The matplotlib.pyplot.polar() function in pyplot module of matplotlib python
library is used to plot the curves in polar coordinates.
Syntax:

matplotlib.pyplot.polar(theta, r, **xkwargs)

e Theta: This is the angle at which we want to draw the curve.

e 1: It is the distance.

1. Circle: » = p,Where p is the radius of the circle

import numpy as np
import matplotlib.pyplot as plt

plt.axes(projection = 'polar')

r = 3
rads = np.arange(0, (2 * np.pi), 0.01)

17

‘# plotting the circle
‘for i in rads:

‘ plt.polar(i, r, 'g."')
'plt.show()

180°

3. Cardioid: r = 5(1 + cosf)

2rge

#Plot cardioid r=5(1+cos theta)
from pylab import *
theta=linspace (0,2*np.pi, 1000)
r1=5+5*cos (theta)

polar (theta,rl,'r')
show ()

150"

27ae°

18

4. Four leaved Rose: r = 2|cos2z]|

#Plot Four Leaved Rose r=2 |cos2x]|
from pylab import *

theta=linspace (0,2*pi,1000)
r=2+abs (cos (2*theta))

polar (theta,r,'r"')

show ()

1a0*

270

5. Cardioids: r = a + acos(f) and r = a — acos(6)

import numpy as np
import matplotlib.pyplot as plt
import math

plt.axes(projection = 'polar')
a=3

rad = np.arange(0, (2 * np.pi), 0.01)

plotting the cardioid

for i in rad:
r = a + (a*np.cos(i))
plt.polar(i,r,'g.")
ri=a-(a*np.cos(i))
plt.polar(i,rl,'r.")

display the polar plot

plt.show ()

19

180"

270

1.7 Parametric Equation

1. Circle: x = acos(0);y = asin(0)

import numpy as np

import matplotlib.pyplot as plt

def circle(r):
x = [] #create the list of x coordinates
y = [] #create the list of y coordinates

for theta in np.linspace(-2*np.pi, 2*np.pi, 100):
#loop over a list of theta, which ranges from -2 pi to 2 pi
x.append (r*np.cos(theta))
#add the corresponding expression of x to the x list
y.append (r*np.sin(theta))
#same for y

plt.plot(x,y) #plot using matplotlib.piplot
plt.show() #show the plot

circle(5) #call the function

20

2. Cycloid: z = a(f — sinf);y = a(1l — sinh)

def cycloid(r):
x = [] #create the list of x coordinates
y = [] #create the list of y coordinates

for theta in np.linspace(-2%np.pi, 2#*np.pi, 100):
#loop over a list of theta, which ranges from -2 pi to 2 pi
x.append (r*(theta - np.sin(theta)))
#add the corresponding expression of x to the x list
y.append (r*(1 - np.cos(theta))) #same for y

plt.plot(x,y) #plot using matplotlib.piplot
plt.show() #show the plot

cycloid (2) #call the function

410 1

35 A

3.0 1

45 1

210 1

15 1

10 1

05 1

0.0 1

-10 -5 0 5 10

1.8 Exercise:
Plot the following:

1. Parabola y? = 4ax
Hyperbola 2—2 — z—; =1

Lower half of the circle: 22 + 2z = 4 + 4y — 1>

-~ LN

cos(%F)
5. 1+ sin(z+)
6. Spiral of Archimedes: r = a + b

7. Limacon: r = a + bcosf

21

LAB 2: Finding angle between two polar curves, cur-
vature and radius of curvature.

2.1 Objectives:
Use python

1. To find angle between two polar curves.

2. To find radius of curvature.

Syntax for the commands used:

1. diff ()

diff (function,variable)

2. Derivative()

Derivative (expression, reference variable)

e expression — A SymPy expression whose unevaluated derivative is found.
e reference variable — Variable with respect to which derivative is found.

e Returns: Returns an unevaluated derivative of the given expression.

3. doit()

doit (x)

4. Return : evaluated object
5. simplify()
simplify (expression)
6. expression — It is the mathematical expression which needs to be simplified.

7. Returns: Returns a simplified mathematical expression corresponding to the input
expression.

8. display()

display(expression)

9. expression — It is the mathematical expression which needs to be simplified.
10. Returns: Displays the expression.

11. syntax of Substitute : subs()

22

math_expression.subs(variable, substitute)

12. variable — It is the variable or expression which will be substituted.
13. substitute — It is the variable or expression or value which comes as substitute.

14. Returns: Returns the expression after the substitution.

2.2 1. Angle between two polar curves

Angle between radius vector and tangent is given by tan ¢ = rj—f.

If tan ¢ and tan ¢5 are angle between radius vector and tangent of two curves then
|1 — ¢ is the angle between two curves at the point of intersection.

1. Find the angle between the curves r = 4(1 + cost) and r = 5(1 — cost).

from sympy import =*
r,t =symbols('r,t') # Define the variables required as symbols

ri=4*(1+cos(t)); #Input first polar curve

r2=5*(1-cos(t)); #Input first polar curve

dri=diff(r1,t) # find the derivative of first function

dr2=diff (r2,t) # find the derivative of secodn function

tl=r1/dr1

t2=r2/dr2

g=solve(rl-r2,t) # solve rl==r2, to find the point of intersection
between curves

wl=tl.subs({t:float(ql[1])}) # substitute the value of "t" in tl

w2=t2.subs({t:float(ql[1])}) # substitute the value of "t" in t2

yl=atan (wl) # to find the inverse tan of wl

y2=atan(w2) # to find the inverse tan of w2

w=abs(yl-y2) # angle between two curves is abs(wl-w2)

print ('Angle between curves in radians is 70.3f'%(w))

2. Find the angle between the curves r = 4cost and r = 5sint.

from sympy import *
r,t =symbols('r,t"')

ri=4x*(cos(t));

r2=5%(sin(t));

dri=diff(r1,t)
dr2=diff (r2,t)
ti=r1/dr1
t2=r2/dr2

g=solve(rli-r2,t)

23

wl=tl.subs({t:float(ql[0]1)})
w2=t2.subs ({t:float(ql[0])})

yl=atan(wl)

y2=atan (w2)

w=abs (yl-y2)

print ('Angle between curves in radians is %0.4f'Jfloat(w))

2.3 2. Radius of curvature
(r? 4+ r2)3/?2

Formula to calculate Radius of curvature in polar form is p = ————5———
r2+2r7 —rry

1. Find the radius of curvature, r = 4(1 4 cost) at t=m/2.

from sympy import *

t=Symbol('t') # define t as symbol

r=Symbol('r"')

r=4x*(1+cos(t))

ri=Derivative(r,t) .doit () #find the first derivative of r w.r.t "t"

r2=Derivative(rl,t).doit () #find the second derivative of r w.r.t "t"

rho=(r**2+rl1**x2) **x (1.5)/(r**x2+2*rl**x2-r*r2); # Substitute rl and r2 in
formula

rhol=rho.subs(t,pi/2) # substitute t in rho

print ('The radius of curvature is %3.4f units'/rhol)

2. Find the radius of curvature for r = asin(nt) at t = pi/2 and n = 1.

from sympy import =*

t,r,a,n=symbols('t r a n')

r=a*sin(n*t)

ri=Derivative(r,t) .doit ()
r2=Derivative(rl,t) .doit ()
rho=(r**2+r1*%2) *x1 .5/ (r**x2+2*xrl1**x2-r*r2) ;
rhol=rho.subs(t,pi/2)

rhol=rhol.subs(n,1)

print ("The radius of curvature is")
display(simplify(rhol))

2.4 Parametric curves

3
. . 12 ,12\5
The formula to calculate Radius of curvature is p = %

de 1 _ dPz _dy . _ d%y

! __ dx _ d°zx /o ay _ a7y
=T a2 Y dt’ dt?

1. Find radius of curvature of = = acos(t), y = asin(t).

24

from sympy import *

from sympy.abc import rho, x,y,r,K,t,a,b,c,alpha # define all symbols
required

y=(sqrt (x)-4) **2

y=a*sin(t) #input the parametric equation

x=a*cos (t)

dydx=simplify(Derivative(y,t).doit())/simplify(Derivative(x,t).doit ())
find the derivative of parametric

equation

rho=simplify ((1+dydx#**2)*x1.5/(Derivative (dydx,t).doit ()/(Derivative (x,
t).doit ()))) #substitute the
derivative in radius of curvature
formula

print ('Radius of curvature is')

display(ratsimp (rho))

t1=pi/2

ri=5

rhol=rho.subs(t,tl);

rho2=rhol.subs(a,rl);

print ('\n\nRadius of curvature at r=5 and t= pi/2 is', simplify(rho2));

curvature=1/rho?2;

print ('\n\n Curvature at (5,pi/2) is',float(curvature))

2. Find the radius of curvature of y = (asin(t))*? ; x = (acos(t))*/?.

from sympy import *

from sympy.abc import rho, x,y,r,K,t,a,b,c,alpha

y=(a*sin(t)) **(3/2)

x=(a*cos (t)) **x(3/2)

dydx=simplify(Derivative(y,t).doit())/simplify(Derivative(x,t).doit ())

rho=simplify ((1+dydx**2)*x1.5/(Derivative (dydx,t).doit()/(Derivative (x,
t).doit ())))

print ('Radius of curvature is')

display(ratsimp (rho))

ti=pi/4

ri=1;

rhol=rho.subs(t,tl);

rho2=rhol.subs(a,rl);

display('Radius of curvature at r=1 and t=pi/4 is',simplify(rho2));

curvature=1/rho2;

print ('\n\n Curvature at (1,pi/4) is',float(curvature))

2.5 Exercise:

Plot the following:

1. Find the angle between radius vector and tangent to the folloing polar curves
a)r=afl and r = §
Ans: Angle between curves in radians is 90.000

b) r = 2sin(f) and r = 2cos(0)
Ans: Angle between curves in radians is 90.000

25

. Find the radius of curvature of r = a(1 — cos(t)) at t = 7.

0.942809041582063(a?)*-2
Ans: — (@)

. Find radius of curvature of x = acos®(t), y = asin3(t) at t = 0.
Ans: p = 0.75v/3 and & = 0.769800

. Find the radius of curvature of r = acos(t) at t = 7.
1.5

Ans: @)°

2a?

. Find the radius of curvature of x = a(t — sin(t)) andy = a(1 — cos(t)) at t = /2.
Ans: p = 2.82842712 and x = 0.353553

26

LAB 3: Finding partial derivatives and Jacobian of
functions of several variables.

3.1 Objectives:
Use python

1. to find partial derivatives of functions of several variables.

2. to find Jacobian of function of two and three variables.

Syntax for the commands used:

1. To create a matrix:

Matrix([[rowl], [row2],[row3]....[rown]])

Ex: A 3 x 3 matrix can be defined as
Matrix([[all,al2,a13],[a21,a22,a23],[a31, a32 a33]])

2. Evaluate the determinant of a matrix M.

Determinant (M)
det (M)

3. To evaluates derivative of function w.r.t variable.

diff (function, variable)

4. If function is of two or more than two independent variable then it differentiates
the function partially w.r.t variable.

If u = u(z,y) then,
o 2 diff(u,)
o St=diff(u,y)
o Tt =diff(u,x,x)

o Th =diff(u,z,y)

3.2 1. Partial derivatives

The partial derivative of f(z,y) with respect to = at the point (zg,yo) is

_of . flxo+ h,yo) — f(w0,90)
Jr= %at(%,yo) = }1112% h :

The partial derivative of f(z,y) with respect to zy at the point (z¢,yo) is

fy = g_gat(%,yo) _ i {{Z0:80) = Fz0:90)

h—0 h

27

1. Prove that mixed partial derivatives , wu,, = u,, for u = exp(z)(xcos(y) —
ysin(y))-

from sympy import *
x,y =symbols('x y')

u=exp(x)*(x*cos(y)-y*sin(y)) # input mutivariable function u=u(x,y)
dux=diff(u,x) # Differentate u w.r.t x
duy=diff(u,y) # Differentate u w.r.t. y
duxy=diff (dux,y) # or duxy=diff(u,x,y)
duyx=diff (duy,x) # or duyx=diff(u,y,x)
Check the condtion uxy=uyx
if duxy==duyx:
print ('Mixed partial derivatives are equal')
else:
print ('Mixed partial derivatives are not equal')

2. Prove that if u = e”(x cos(y) — ysin(y)) then u,, + u,, = 0.

from sympy import *
x,y =symbols('x y"')

u=exp (x)*(x*xcos(y)-y*sin(y))
display (uw)

dux=diff (u,x)

duy=diff (u,y)

uxx=diff (dux,x) # or uxx=diff(u,x,x) second derivative of u w.r.t x
uyy=diff (duy,y) # or uyy=diff(u,y,y) second derivative of u w.r.t y
W=UuxXxX+uyy # Add uxx and uyy

wl=simplify (w) # Simply the w to get actual result
print ('Ans:',float (wl))

3.3 1II Jacobians

Let x = g(u,v) and y = h(u,v) be a transformation of the plane. Then the Jacobian of
this transformation is

oz
o
ov

1. If u =2y/2z,v = yz/x,w = zz/y then prove that J = 4.

from sympy import
Xx,y,z=symbols('x,y,z"')

u=x*y/z

v=y*z/x

w=z*x/y

find the all first order partial derivates
dux=diff (u,x)

28

duy=diff (u,y)
duz=diff (u,z)

dvx=diff (v,x)
dvy=diff (v,y)
dvz=diff (v, z)

dwx=diff (w,x)
dwy=diff (w,y)
dwz=diff (w,z)

construct the Jacobian matrix
J=Matrix ([[dux,duy,duz], [dvx,dvy,dvz], [dwx,dwy,dwz]]);

print ("The Jacobian matrix is \n")
display (J)

Find the determinat of Jacobian Matrix
Jac=det (J).doit ()
print('\n\n J = ', Jac)

2. If u=x+3y*— 23, v = 42%yz, w = 22 — xy then prove that at (1,—1,0), J = 20.

from sympy import *
X,y,z=symbols('x,y,z")

u=x+3*y**2—z**3
V=4kX Rk 2ky*Z
W=2%Z*Z k¥ 2-X*y
dux=diff (u,x)
duy=diff (u,y)
duz=diff (u,z)

dvx=diff (v,x)
dvy=diff (v,y)
dvz=diff (v, z)
dwx=diff (w,x)
dwy=diff (w,y)
dwz=diff (w,z)
J=Matrix ([[dux,duy,duz], [dvx,dvy,dvz], [dwx,dwy,dwz]]);

print ("The Jacobian matrix is ")
display (J)

Jac=Determinant (J).doit ()

print ('\n\n J = \n')

display(Jac)

J1=J.subs([(x, 1), (y, -1), (z, 0)1)

print('\n\n J at (1,-1,0):\n"')

29

Jacl=Determinant (J1) .doit ()
display(Jacl)

3. X =pxcos(¢)xsin(0), Y = px*cos(¢) x cos(0), Z = p* sin(¢) then find 88(();’3;’92)).

from sympy import *
from sympy.abc import rho, phi, theta

X=rho*cos (phi)*sin(theta);
Y=rho*cos (phi)*cos(theta);
Z=rho*sin (phi) ;

dx=Derivative (X,rho) .doit ()
dy=Derivative (Y,rho) .doit ()
dz=Derivative (Z,rho) .doit ()
dxl=Derivative (X,phi) .doit ();
dyl=Derivative (Y,phi) .doit () ;
dzl=Derivative (Z,phi) .doit ()
dx2=Derivative (X, theta) .doit ()
dy2=Derivative (Y,theta) .doit ();
dz2=Derivative (Z,theta) .doit ();

J=Matrix([[dx,dy,dz], [dx1l,dyl,dz1],[dx2,dy2,dz2]]);
print ('The Jacobian matrix is ')

display (J)

print ('\n\n J = \n'")
display(simplify(Determinant (J).doit()))

3.4 Exercise:

Plot the following;:

1. If u = tan~Y(y/z) verify that -2 = 2°u

Oydx ~— Oxdy’
Ans:True

2. Ifu= log(%) show that zu, + yu, = 1.
Ans: True

3. fr=u—v,y=v—wuvw and z = wow find Jacobian of z,y, 2z w.r.t u, v, w.
Ans: uv

4. If & = rcos(t) and y = rsin(t) then find the 224

o(r,t) *
Ans: J=r
5. If u =2+ 3y? — 2%, v = 42%yz and w = 22? — xy find % at (-2,-1,1).
Ans: 752

30

LAB 4: Applications of Maxima and Minima of func-

tions of two variables, Taylor series expansion and
L’Hospital’s Rule

4.1 Objectives:
Use python

1. to find find the maxima and minima of function of two variables.
2. to expand the given single variable funtion as Taylor’s and Maclaurin series.

3. to find the limiting value of the given function f(z) as x — a.

Syntax for the commands used:

1. To solve

sympy .solve (expression)

Returns the solution to a mathematical expression/polynomial.
2. To evaluate an expression

sympy . evalf ()

Returns the evaluated mathematical expression.
3. To construct an instant function

sympy .lambdify (variable, expression, library)

Converts a SymPy expression to an expression that can be numerically evaluated.
lambdify acts like a lambda function, except it, converts the SymPy names to the
names of the given numerical library, usually NumPy or math.

4. To find the limit of a function

Limit (expression, variable, value)

Returns the limit of the mathematical expression under given conditions.

4.2 Maxima and minima problem

Find the Maxima and minima of f(z,y) = 2® + y? + 3z — 3y + 4.

import sympy

from sympy import Symbol, solve, Derivative, pprint
x=Symbol ('x"')

y=Symbol('y"')

f=x**x2+x*xy+y**x2+3*%x-3*y+4

31

dl=Derivative (f,x) .doit ()
d2=Derivative (f,y) .doit ()
criticalpointsi=solve(dl)
criticalpoints2=solve (d2)
sl=Derivative (f,x,2) .doit ()
s2=Derivative(f,y,2) .doit ()
s3=Derivative (Derivative(f,y) ,x).doit ()
print ('function value is ')

ql=s1.subs({y:criticalpointsl ,x:criticalpoints2}).evalf ()
g2=s2.subs({y:criticalpointsl ,x:criticalpoints2}) .evalf ()
q3=s3.subs({y:criticalpointsl ,x:criticalpoints2}) .evalf ()
delta=sl+*s2-83**2

print (delta, q1)

if (delta>0 and s1<0):
print (" f takes maximum ")
elif (delta>0 and s1>0):
print (" f takes minimum")
if (delta<0):
print ("The point is a saddle point")
if (delta==0):
print ("further tests required")

4.3 Taylor series expansion

f(z) = f(zo) + (x — x0) f'(x0) + %ﬁf”(w} is called Taylor series expansion of f(x).

1. Expand sin(z) as Taylor series about = = pi/2 upto 3rd degree term. Also
find sin(100°)

import numpy as np

from matplotlib import pyplot as plt
from sympy import *

x=Symbol('x"')

y=sin(1%*x)

format

x0=float (pi/2)

dy=diff (y,x)

d2y=diff (y,x,2)

d3y=diff(y,x,3)

yat=lambdify (x,y)

dyat=lambdify (x,dy)

d2yat=lambdify(x,d2y)

d3yat=lambdify(x,d3y)

y=yat (x0)+((x-x0)/2) *dyat (x0)+((x-x0) **2/6) *d2yat (x0) +((x-x0) **x3/24) *
d3yat (x0)

print (simplify(y))

yat=lambdify (x,y)

print ("%.3f" 7 yat(pi/2+10%(pi/180)))

32

def f(x):
return np.sin(1l%*x)

x = np.linspace(-10, 10)

plt.plot(x, yat(x), color='red')
plt.plot(x, f£(x), color='green')
plt.ylim([-3, 3])

plt.grid ()

plt.show ()

4.4 Maclaurin Series

2. Find the Maclaurin series expansion of sin(x)+ cos(z) upto 3rd degree term.
Calculate sin(10) + cos(10).

import numpy as np

from matplotlib import pyplot as plt
from sympy dimport =*

x=Symbol ('x"')

y=sin(x)+cos(x)

format

x0=float (0)

dy=diff (y,x)

d2y=diff(y,x,2)

d3y=diff(y,x,3)

yat=lambdify (x,y)

dyat=lambdify (x,dy)

d2yat=lambdify (x,d2y)

d3yat=lambdify (x,d3y)

y=yat(x0)+((x-x0)/2)*dyat (x0)+((x-x0) **2/6) *d2yat (x0)+ ((x-x0) *x3/24) *
d3yat (x0)

print (simplify (y))

yat=lambdify (x,y)

print ("%.3f" % yat(10*(pi/180)))

def f(x):

return np.sin(l#*x)+np.cos(x)
x = np.linspace(-10, 10)
plt.plot(x, yat(x), color='red')
plt.plot(x, f£(x), color='green')
plt.ylim([-3, 3])

plt.grid)
plt.show ()

4.5 L’Hospital’ rule

We can evaluate inderminate forms easily in python using Limit command

33

1. lim 2@
z—0 ¥
from sympy import Limit, Symbol,exp,sin
x=Symbol ('x"')
1=Limit ((sin(x))/x,x,0) .doit ()
print (1)

- ((5z*—42%-1)
2. Evaluate i;rr% “(10=2-92%)
from sympy import *
x=Symbol ('x"')
1=Limit ((b*x**4-4*x*¥2-1)/(10-x-9*x**3) ,x,1) .doit ()
print (1)

3. Prove that lim,_, (1 + %)xze

from sympy import *

from math import inf

x=Symbol ('x"')

1=Limit ((1+1/x) **x,x,inf) .doit ()
display (1)

4.6 Exercise:

Plot the following:

1. Find the Taylor Series expansion of y = e~2* at = 0 upto third degree term.

Ans: —0.333333333333333 * 2® + 0.666666666666667 * x* — 1.0 x x + 1.0

2. Expand y = ze37" as Maclaurin’s series upto fifth degree term.

Ans: x * (0.75 x 2t — 0.75 % 2 + 0.5)

3. Find the Taylor Series expansion of y = cos(z) at x = 7.
Ans:0.010464z 4 0.0054423 — 0.155467x2 — 0.1661389657x + 0.827151505

4. Find the Maclaurin’s series expansion of y = e @) gt p =0 upto 23 term. Also
Plot the graph.
Ans:—0.0833333333333333z3 + 0.16666666666666722 — 0.5z + 1.0

2sinx—sin2x
r—sinx

5. Evaluate lim,_,

Ans:6

6. Evaluate lim, o [V2? + 2+ 1 — Va2 +1].
Ans:0.5

34

LAB 5: Solution of First order differential equation
and ploting the solution curves

5.1 Objectives:
Use python

1. To find the solution of first order differential equations.

2. To represent the solution graphically.

Syntax for the commands used:

1. dsolve()

sympy .solvers.ode.dsolve(eq, func=None, hint='default',6 simplify=
True, ics=None, xi=None, eta=
None, x0=0, n=6, *+*kwargs)

Parameters

e eq: eq can be any supported ordinary differential equation (see the ode doc-
string for supported methods). This can either be an Equality, or an expres-
sion, which is assumed to be equal to 0.

e func: f(x) is a function of one variable whose derivatives in that variable make
up the ordinary differential equation eq. In many cases it is not necessary to
provide this; it will be autodetected (and an error raised if it could not be
detected).

e hint: hint is the solving method that you want dsolve to use. Use classify_ode(eq,
f(x)) to get all of the possible hints for an ODE. The default hint, default,
will use whatever hint is returned first by classify ode(). See Hints below
for more options that you can use for hint.

e simplify: simplify enables simplification by odesimp(). See its docstring for
more information. Turn this off, for example, to disable solving of solutions
for func or simplification of arbitrary constants. It will still integrate with this
hint. Note that the solution may contain more arbitrary constants than the
order of the ODE with this option enabled.

e xi and eta: are the infinitesimal functions of an ordinary differential equa-
tion. They are the infinitesimals of the Lie group of point transformations
for which the differential equation is invariant. The user can specify values
for the infinitesimals. If nothing is specified, xi and eta are calculated using
infinitesimals() with the help of various heuristics.

e ics: is the set of initial/boundary conditions for the differential equation.It
should be given in the form of {f(x0): x1, f(x).diff(x).subs(x, x2):
x3} and so on. For power series solutions, if no initial conditions are specified
f(0) is assumed to be CO and the power series solution is calculated about 0.

35

e x0: is the point about which the power series solution of a differential equation
is to be evaluated.

e n: gives the exponent of the dependent variable up to which the power series
solution of a differential equation is to be evaluated. also be much faster than
all, because integrate() is an expensive routine.

e Usage:

— Solves any kind of ordinary differential equation and system of ordinary
differential equations.

— Usage dsolve(eq, f(x), hint) — > Solve ordinary differential equation
eq for function f(x), using method hint.

2. odeint(): The odeint (ordinary differential equation integration) library is a col-
lection of advanced numerical algorithms to solve initial-value problems.

y = odeint (model, yO, t)

Parameters:
e model: Function name that returns derivative values at requested y and t
values as dydt = model(y,t)
e y0: Initial conditions of the differential states

e t: Time points at which the solution should be reported.

3. linspace():
linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=

None, axix=0)

Prameters

e start: It represents the starting value of the sequence.
e stop: It represents the ending value of the sequence.

e num: It generates a number of samples. The default value of num is 50 and it
must be a non-negative number. It is of int type and can be optional.

e endpoint: By default its value is True. If we take it as False then the value
can be excluded from the sequence. It is of bool type and can be optional.

e retstep: If its True then it returns samples and step value where the step is
the spacing between the samples.

e dtype(data type): It represents the type of the output array. It can also be
optional.

e axis: The axis is the result to store the samples. It is of int type and can be
optional.

36

1. Solve : %Et) =r.

from sympy import *
init_printing ()

t,r = symbols('t,r') # Define the symbols
P = Function('P')(t) # define function

C1 = Symbol('C1l'")

print ("\nDifferential Equation")

DEl1=Derivative(P, t, 1)-r # define the differeentail equation
display (DE1)

General solution
print ("\nGeneral Solution")

GSl1=dsolve(DE1l) # Solve the differentail equation
display(GS1) # Display the solution

print ("\nParticular Solution")
PS1=GS1.subs ({C1:2}) # substitute the value of the conastant
display (PS1)

2: Solve: % + tanz — y3secx = 0.

from sympy import =*

x,y=symbols('x,y")
y=Function("y") (x)

yl=Derivative (y,x)
zl=dsolve (Eq(yl+y*tan(x)-y**3*sec(x)),y)

display(z1)

3dy

o 2%y + y*cosx = 0.

3: Solve: z

from sympy import *

X,y=symbols('x,y"')

y=Function("y") (x)

yl=Derivative (y,x)

zl=dsolve (Eq(x**x3*xyl-x**x2*y+y**x4dxcos(x),0),y)
display(z1)

5.2 Solution curves

Solving IVP using odeint:

37

1. Solve % = —ky with parameter k£ = 0.3 and y(0) = 5.

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

Function returns dy/dt

def model(y,t):
k=0.3
dydt=-kx*y
return -kx*y

initial condition
y0=5

values for time
t=np.linspace(0,20)

solve ODE
y= odeint (model,y0,t)

plt.plot(t,y)

plt.title('Solution of dy/dt=-ky; k=0.3, y(0)=5"')
plt.xlabel('time')

plt.ylabel ('y(t) ")

plt.show ()

2. Simulate 7‘2—? = —y+ Kyu; K, =3.0,7 = 2.0.

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

Kp=3
taup=2

Differential Equation:

def model(y,t):
u =1
return (-y + Kp * u)/taup

t3 = np.linspace(0,14,100)

ODE integrator
y3 = odeint (model,0,t3)

plt.plot(t3,y3, 'r-',linewidth=1,label="'0DE Integrator')
plt.xlabel ('Time')

plt.ylabel ('Response (y)')

plt.legend(loc="'best"')

plt.show ()

38

3. Application problem

A culture initially has Fy number of bacteria. At ¢t = 1 hour the number of bacteria is
measured to be %PO. If the rate of growth is proportional to the number of bacteria P(t)
present at time ¢, determine the time necessary for the number of bacteria to triple.
The differential equation is : % =kp; P(1) = %po.
The solution is : y = Pyel-405165108108164¢ "y, v 9(),

from pylab import =*

t=arange(0,10,0.5) # Define the range where we want solution
P0=20

y=20*exp (0.405465108108164*1t)

plot(t,y)

xlabel ('Time"')

ylabel ('no of bacteria')

title('Law of Natural Growth')

show ()

4. Newton’s Law of cooling

Solving Newton’s law of cooling by solution. The solution of mathematical representation
of Newton’s Law of cooling is, T = to + (t; — to)e ", where, T=temperature at any time
t, t; = Initial temperature, t5 = surrounding temperature, k = thermal conductivity of
the material.

1. The temperature of a body drops from 100 C to 75 C in 10 minutes where the
surrounding air is at the temperature 20 C . What will be the temperature of the
body after half an hour? Plot the graph of cooling.

import numpy as np

from sympy import *

from matplotlib import pyplot as plt

t2=20 # surrounding temp

t1=100 # inital temp

one reading t=1 minute temp is 75 degree

t=10

T=75

k1=(1/t)*1log((t1-t2)/(T-t2))# k calculation
print ('k= ',k1)

k=Symbol('k"')

t=Symbol('t"')

T=Function('T"') (t)
T=t2+(t1-t2)*exp(-k*t) # solution
print ('T="',T)

ploting the solution curve
T=T.subs (k, k1)

T=lambdify(t,T)

t = np.linspace(0, 70)

plt.plot(t, T(t), color='red')

plt.grid)
plt.show ()

39

When time t=30 minute T 1is
print ('When time t=30 minute T is,',T(30),'o C')

5.3 Exercise:

Plot the following:

1. Solve ysinxdz — (1 + y* + cos*z)dy = 0.
Ans: (1/2)ycos2z + (3/2)y +y*/3=0

2. Solve j—g = z + y subject to condtion y(0) = 2.

Ans: y=3e" —x —1

3. Solve % = 22 subject to condtion y(0) = 5.

dx

Ansiy = 23/3 +5

4. Solve x?y = ylag(_)=y

Ans:y(z) = e“rion ')

5. Solve ¢y —y — xe® = 0.
Ans:y(x) = <C’1 + ‘%2) e”

40

LAB 8: Numerical solution of system of equations,
test for consistency and graphical representation of
the solution.

8.1 Objectives:
Use python

1. to find solution of system of equations numerically.

2. to test for consistency and represent the solution graphically.

Syntax for the commands used:

1. numpy.matrix(data, dtype = None)

numpy .matrix (data, dtype = None)

Returns a matrix from an array-like object, or from a string of data. A matrix is a
specialized 2-D array that retains its 2-D nature through operations.

2. numpy.linalg.matrix rank(A):
numpy.linalg.matrix_rank (A)
Return rank of the array.

3. numpy.shape (A):
numpy . shape (A)

Returns the shape of an array.

4. sympy.Matrix()

sympy . Matrix ()

Creates a matrix.

8.2 Solution of system of equations
System of homogenous linear equations:

The linear system of equations of the form AX = 0 is called system of homogenous linear
equations. jbr; The n-tuple (0,0,...,0) is a trivial solution of the system. jbr; The
homogeneous system of m equations AX = 0 in n unknowns has a non trivial solution if
and only if the rank of the matrix A is less than n. Further if p(A) = r < n, then the
system possesses (n — r) linearly independent solutions.

41

Example 1:

Check whether the following system of homogenous linear equation has non-trivial solu-
tion. z1 + 2z9 — 23 =0, 221 + 19 + 423 =0, 3xr1 + 3x9 + 423 = 0.

import numpy as np
A=np.matrix([[1,2,-1],[2,1,4],[3,3,4]1])
B=np.matrix([[0],[0],[0]11)

r=np.linalg.matrix_rank (A)
n=A.shape[1]

if (r==n):
print ("System has trivial solution")
else:
print ("System has", n-r, "non-trivial solution(s)")

System has trivial solution

Example 2:

Check whether the following system of homogenous linear equation has non-trivial solu-
tion. x1 + 2x9 — x3 = 0, 211 + 19 + 423 =0, T1 — T9 + Dxg = 0.

import numpy as np
A=np.matrix([[1,2,-1]1,[2,1,4],[1,-1,5]1)
B=np.matrix([[0],[0],[0]1])
r=np.linalg.matrix_rank (A)

n=A.shape[1]

if (r==n):
print ("System has trivial solution")
else:
print ("System has", n-r, "non-trivial solution(s)")

System has 1 non-trivial solution(s)

8.3 System of Non-homogenous Linear Equations

The linear system of equations of the form AX = B is called system of non-homogenous
linear equations if not all elements in B are zeros.
The non homogeneous system of m equations AX = B in n unknowns is

e consistent (has a solution) if and only if, p(A) = p([A|B])
e has unique solution, p(A) =n
e has infintely many solutions, p(A4) <n

e system is inconsistent p(A) # p([A|B]).

42

Example 3:

Examine the consistency of the following system of equations and solve if consistent.
$1+2$2—l’3:1, 2I1+.§C2+4l’3:2, 31’1+3SL’2+4I3:1

A=np.matrix([[1,2,-1],[2,1,4],[3,3,4]11)
B=np.matrix([[1],[2],[1]1])
AB=np.concatenate ((A,B), axis=1)
rA=np.linalg.matrix_rank (A)
rAB=np.linalg.matrix_rank (AB)
n=A.shape[1]
if (rA==rAB):
if (rA==n):
print ("The system has unique solution")
print (np.linalg.solve (A,B))
else:
print ("The system has infinitely many solutions")
else:
print ("The system of equations is inconsistent")

The system has unique solution
(L 7.]

[-4.]

[-2.]]

Example 4:

Examine the consistency of the following system of equations and solve if consistent.
T+ 229 — a3 = 1, 221 + 19 + D3y = 2, 321 + 3xy + 43 = 1.

A=np.matrix([[1,2,-1],[2,1,5],[3,3,4]11)
B=np.matrix([[1],[2],[11])
AB=np.concatenate ((A,B), axis=1)
rA=np.linalg.matrix_rank (A)
rAB=np.linalg.matrix_rank (AB)
n=A.shape[1]
if (rA==rAB):
if (rA==mn):
print ("The system has unique solution")
print (np.linalg.solve(A,B))
else:
print ("The system has infinitely many solutions")
else:
print ("The system of equations is inconsistent")

The system of equations is inconsistent

Alternate method for the above problem using sympy package

import sympy as sp
X, y, z=sp.symbols('x y z')

43

A=sp.Matrix([[1,2,-1],[2,1,5],[3,3,4]1])
B=sp.Matrix([[1],[2],[1]1])
AB=A.col_insert (A.shape[1l],B)
rA=A.rank ()
rAB=AB.rank ()
n=A.shape[1]
print ("The coefficient matrix is")
sp.pprint (A)
print (f"The rank of the coefficient matrix is {rAl}")
print ("The augmented matrix is")
sp.pprint (AB)
print (£"The rank of the augmented matrix is {rAB}")
print (£"The number of unkowns are {nl}")
if (rA==rAB):
if (rA==n):
print ("The system has unique solution")
else:
print ("The system has infinitely many solutions")
print (sp.solve_linear_system(AB,x,y,z))
else:
print ("The system of equations is inconsistent")

8.4 Graphical representation of solution
Example 5:
Obain the solution of 3z + 5y = 1;x + y = 1 graphically.

from sympy import *
import numpy as np
import matplotlib.pyplot as plt

X,y=symbols('x,y"')

sol=solve ([3*x+b*y-1,x+y-1],[x,y])
p=sol[x]

g=sol[y]

print ('Point of intersection is A (', p ,',', q, '")\n')
x = np.arange(-10, 10, 0.001)

yl = (1-3*x)/5
y2=1-x

plt.plot(x,yl,x,y2)
plt.plot(p,q,marker = 'o')

plt.annotate('A', xy=(p,q), xytext=(p+0.5, q))
plt.x1im(-5,7)

plt.ylim(-7,7)

plt.axhline (y=0)

plt.axvline (x=0)

plt.title("$3x+5y=1; x+y=1$")
plt.xlabel("Values of x")

plt.ylabel("Values of y ")

44

plt.legend (['$3x+5y=1$", '$x+y=1$"'1)
plt.grid ()
plt.show ()

Point of intersection is A (2 , -1)

Example 6:
Obtain the solution of 2x + y = 7; 3z — y = 3 graphically.

from sympy import *
import numpy as np
import matplotlib.pyplot as plt

X,y=symbols('x,y"')

sol=solve ([2*x+y-7,3*x-y-3],[x,y])
p=sol[x]

g=sol[y]

print ('Point of intersection is A (', p ,',', q, 'D\n')
x = np.arange(-10, 10, 0.001)

yl = 7-2%*x
y2=3%x-3

plt.plot(x,yl,'r"')
plt.plot(x,y2,'g"')

plt.plot(p,q,marker = 'o')

plt.annotate('A', xy=(p,q), xytext=(p+0.5, q))
plt.x1lim(-5,7)

plt.ylim(-7,7)

plt.axhline (y=0)

plt.axvline (x=0)

plt.title("$2x+y=7; 3x-y=3$")
plt.xlabel("Values of x")

plt.ylabel("Values of y ")

plt.legend (['$2x+y=7$"', '$3x-y-3$'1)
plt.grid)

plt.show ()

Point of intersection is A (2 , 3)

8.5 Exercise:

1. Find the solution of the system homogeneous equations z+y+2z =0, 2z+y—32z =0
and 4z — 2y — 2z = 0.
Ans: The system has trivial solution.

45

2. Find the solution of the system non-homogeneous equations 25z + y + 2z = 27,
2¢ 4+ 10y — 3z =9 and 4x — 2y — 12z = —10.
Ans: [1, 1, 1]

3. Find the solution of the system non-homogeneous equations = +y + 2z = 2, 2x +
20 —2z=4and r — 2y — 2 = 5.
Ans:[3,-1,0]

4. Check whether the following system of equations are consistent.
a. r+y+z2=22x+2y—2z=6and r —2y — 2z =5>.
b. 2v4+y+2=4,4v 4+ 2y — 2z =8 and 4o + 22y + 2z = 5.
Ans: a. Consistent, b. Inconsistent

46

LAB 9: Solution of system of linear equations by
Gauss-Seidel method.

9.1 Objectives:
Use python

1. to check whether the given system is diagonally dominant or not.
2. to find the solution if the system is diagonally dominant.

Gauss Seidel method is an iterative method to solve system of linear equations. The

method works if the system is diagonally dominant. That is |a;| > > |a,;| for all i's.
i#]

Example 1:

Solve the system of equations using Gauss-Seidel method: 20x+y—2z = 17; 3x+20y—z =
—18;2x — 3y + 20z = 25.

Gauss Seidel Iteration

Defining equations to be solved
in diagonally dominant form

f1 = lambda x,y,z: (17-y+2%*z)/20
f2 = lambda x,y,z: (-18-3%x+z)/20
f3 = lambda x,y,z: (25-2*%x+3%xy)/20

Initial setup

x0 = 0
yoO = 0
z0 = 0
count = 1

Reading tolerable error
e = float(input('Enter tolerable error: '))

Implementation of Gauss Seidel Iteration
print ('\nCount\tx\ty\tz\n"')

condition = True

while condition:

x1 = £1(x0,y0,z0)

y1 £2(x1,y0,2z0)

z1 f3(x1,y1,z0)

print ('%d\t%0.4£\t%0.4£\t%0.4f\n"' % (count, x1,yl,z1))
el = abs(x0-x1);

e2 = abs(y0-y1);

e3 = abs(z0-z1);

count += 1

x0 = x1
yo = y1
z0 = z1

47

condition = el>e and e2>e and e3>e

print ('\nSolution: x=%0.3f, y=%0.3f and z = 70.3f\n'’% (x1,y1,z1))

Enter tolerable error: 0.001

Count X y z

1 0.8500 -1.0275 1.0109
2 1.0025 -0.9998 0.9998
3 1.0000 -1.0000 1.0000

Solution: x=1.000, y=-1.000 and z = 1.000

Example 2:
Solve x +2y — 2z = 3;3z —y+ 2z = 1; 2x — 2y + 62 = 2 by Gauss-Seidel Iteration method.

Defining equations to be solved
in diagonally dominant form

f1 = lambda x,y,z: (l+y-2x*z)/3

f2 = lambda x,y,z: (3-x+z)/2

f3 = lambda x,y,z: (2-2%xx+2%*y)/6

Initial setup
XO,yO,ZO = O’O,O

Reading tolerable error
e = float(input('Enter tolerable error: '))
Implementation of Gauss Seidel Iteration
print ('\t Iteration\t x\t y\t z\n')
for i in range(0,25):
x1 = £1(x0,y0,z0)
y1 f2(x1,y0,z0)
z1 £f3(x1,y1,20)
#Printing the values of x, y, z in ith iteration
print ('%d\t%0.4£f\t%0.4£\t%0.4f\n"' % (i, x1,yl1,z1))
el = abs(x0-x1);
e2 = abs(y0-y1);
e3 = abs(z0-z1);

x0 = x1
yo = y1
z0 = z1

if el>e and e2>e and e3>e:
continue
else:

48

break

print ('\nSolution: x=%0.3f, y=0.3f and z = %0.3f\n'% (x1,yl,z1))

Enter tolerable error: 0.001

Iteration X y z
0 0.3333 1.3333 0.6667
1 0.3333 1.6667 0.7778

Solution: x=0.333, y=1.667 and z = 0.778

Example 3:

Apply Gauss-Siedel method to solve the system of equations: 20z +y — 2z = 17;3x +
20y — z = —18; 22 — 3y 4+ 20z = 25.

from numpy import *
def seidel(a, x ,b):
#Finding length of a(3)
n = len(a)
for loop for 3 times as to calculate x, y , z
for j in range(O0, n):
temp variable d to store b[j]
d = blj]

to calculate respective xi, yi, zi
for i in range(0, n):
if(j !'= 1i):
d=d-alj1[i] * x[i]
updating the value of our solution
x[jl =4 / aljl[j]
returning our updated solution
return x
a=array([[20.0,1.0,-2.0],[3.0,20.0,-1.0],[2.0,-3.0,20.0]11)
x=array ([[0.0],[0.0],[0.011)
b=array ([[17.0],[-18.0],[25.0]])
for i in range(0, 25):
x = seidel(a, x, b)
print (x)

I_|IT|I_|
[S
_ e —

]

Note: In the next example we will check whether the given system is diagonally
dominant or not.

49

Example 4:

Solve the system of equations 10x +y + 2 = 12;2 + 10y + 2 = 12;x +y + 10z = 12 by
Gauss-Seidel method.

from numpy import *

import sys

#This programme will check whether the given system is diagonally
dominant or not

def seidel(a, x ,b):
#Finding length of a(3)
n = len(a)
for loop for 3 times as to calculate x, y , z
for j in range(0, n):
temp variable d to store bl[j]
d = blj]

to calculate respective xi, yi, zi
for i in range(0, n):
if(j !'= 1i):
d=d-aljl[i] * x[i]
updating the value of our solution
x[j] = d/aljl[j]
returning our updated solution
return x
a=array([[10.0,1.0,1.0],[1.0,10.0,1.0],[1.0,1.0,10.011)
x=array([[1.0],[0.0],[0.0]])
b=array ([[12.0],[12.0],[12.0]1])

We shall check for diagonally dominant
for i in range(0,len(a)):

asum=0
for j in range(0,len(a)):
if (i1=j):

asum=asum+abs (alil [j])

if (asum<=ali] [i]):
continue
else:

sys.exit ("The system is not diagonally dominant")

for i in range(0, 25):
x = seidel(a, x, b)
print (x)
Note here that the inputs 1if float gives the output in float.

[[1.]
[1.]
[1.1]

Note: In the next example, the Upper triangular matrix is calculated by the numpy
function for finding lower triangular matrix. this upper triangular matrix is multiplied by

20

the chosen basis function and subtracted by the rhs B column matrix. the new x found is
the product of inverse(lower triangular matrix) and the B-UX. This program is available
on github

Example 5:

Apply Gauss-Siedel method to solve the system of equations: bxr—y—z = —3;x—5y+2z =
—9;2x 4y —4z = —15.

import numpy as np
from scipy.linalg import solve

def gauss(A, b, x, n):

L = np.tril(A)

U=A-1

for i in range(n):
xnew = np.dot(mnp.linalg.inv(L), b - np.dot(U, x))
X=xnew

print (x)

print (x)
return x

rr _MAIN_ []

A = np.array([[5.0, -1.0, -1.0], [1.0, -5.0, 1.0], [2.0, 1.0, -4.0]11)

b = [-3.0,-9.0,-15.0]
x = [1, 0, 1]
n = 20

gauss(A, b, x, n)
solve (A, b)

[1. 3. 5.]
array([1., 3., 5.1)

9.2 Exercise:

1. Check whether the following system are diagonally dominant or not
a. 2bx+y+2=27,2x+ 10y — 32 =9 and 4x — 2z — 122 = —10.
b.x+y+2=72xr+y—32z=3and 4 —2x — 2z = —1.

Ans: a. Yes b. No
2. Solve the following system of equations using Gauss-Seidel Method.

a. dr+y+2=6,2x+5y —2z=>5and v — 2z — 7z = 8.
b. 27x + 6y — 2 = 85, 6x + 15y + 22 = 72 and = + y + 542 = 110

Ans: a. [1,1,1] b. [2.42, 3.57, 1.92]

51

LAB 10: Compute eigenvalues and corresponding eigen-
vectors. Find dominant and corresponding eigenvec-
tor by Rayliegh power method.

10.1 Objectives:
Use python

1. to find eigenvalues and corresponding eigenvectors.

2. to find dominant and corresponding eigenvector by Rayleigh power method.

Syntax for the commands used:

1. np.linalg.eig(A): Compute the eigenvalues and right eigenvectors of a square
array

np.linalg.eig(A)

Returns the following;:

e w(..., M) array
The eigenvalues, each repeated according to its multiplicity. The eigenvalues
are not necessarily ordered. The resulting array will be of complex type, unless
the imaginary part is zero in which case it will be cast to a real type. When
a is real the resulting eigenvalues will be real (0 imaginary part) or occur in
conjugate pairs.

e v(..., M, M) array

The normalized (unit “length”) eigenvectors, such that the column v[:,i] is the
eigenvector corresponding to the eigenvalue wii].

2. np.linalg.eigvals(A): Computes th eigenvalues of a non-symmetric array.
3. np.array(parameter): Creates ndarray

e np.array([[1,2,3]]) is a one-dimensional array

e np.array([[1,2,3,6],[3,4,5,8],[2,5,6,1]]) is a multi-dimensional array
4. lambda arguments:expression: Anonymous function or function without a name

e This function can have any number of arguments but only one expression,
which is evaluated and returned.

e They are are syntactically restricted to a single expression.

e Example: f=lambda z : z* %2 — 3%z + 1 (Mathematically f(z) = 2> -3z +1)

5. np.dot(vector_a, vector_b): Returns the dot product of vectors a and b.

52

10.2 Eigenvalues and Eigenvectors

Eigenvector of a matrix A is a vector represented by a matrix X such that when X is
multiplied with matrix A, then the direction of the resultant matrix remains same as
vector X.

Example 1:

Obtain the eigen values and eigen vectors for the given matrix.

4 3 2
1 4 1
3 10 4

—_

import numpy as np
I=np.array([[4,3,2],[1,4,1],[3,10,4]11)
print ("\n Given matrix: \n", I)

#x=np.linalg.eigvals (I)
w,v = np.linalg.eig(I)

print ("\n Eigen values: \n", w)

print ("\n Eigen vectors: \n", v)

To display one eigen value and correspondingeigen vector
print ("Eigen value:\n ", w[0])

print ("\n Corresponding Eigen vector :", v[:,0])

Given matrix:

[[4 3 2]
[1 4 1]
[310 4]1]

Eigen values:
[8.98205672 2.12891771 0.88902557]

Eigen vectors:

[[-0.49247712 -0.82039552 -0.42973429]
[-0.26523242 0.14250681 -0.14817858]
[-0.82892584 0.55375355 0.89071407]]

Eigen value:
8.982056720677654

Corresponding Eigen vector : [-0.49247712 -0.26523242 -0.82892584]

23

Example 2:

Obtain the eigen values and eigen vectors for the given matrix.

1 -3 3
A=13 =5 3
6 —6 4

import numpy as np
I=np.array([[1,-3,3],[3,-5,3],[6,-6,4]1])

print ("\n Given matrix: \n", I)
w,v = np.linalg.eig(I)
print ("\n Eigen values: \n", w)

print ("\n Eigen vectors: \n", v)

Given matrix:

[([1-3 3]
[3 -5 3]
[6 -6 4]]

Eigen values:
[4.+0.00000000e+00j -2.+1.10465796e-15j -2.-1.10465796e-15j]

Eigen vectors:
[[-0.40824829+0. j 0.24400118-0.40702229j 0.24400118+0.407022297]
[-0.40824829+0. j -0.41621909-0.40702229j -0.41621909+0.40702229]]

10.3 Largest eigenvalue and corresponding eigenvector by Rayleigh
method

For a given Matrix A and a given initial eigenvector X, the power method goes as
follows: Consider AXy and take the largest number say A\; from the column vector and
write AXg = A\ X;. At this stage , \; is the approximate eigenvalue and X; will be
the corresponding eigenvector. Now multiply the Matrix A with X; and continue the
iteration. This method is going to give the dominant eigenvalue of the Matrix.

Example 4:

6 -2 2
Compute the numerically largest eigenvalue of P= | —2 3 —1 | by power method.
2 -1 3
import numpy as np
def normalize(x):
fac = abs(x).max()
x.n = x / x.max ()

o4

return fac, x_n

np.array([1, 1,1])

np.array([[6,-2,2],
[-2,3,-1],[2,-1,311)

©
([T

for i in range(10):
x = np.dot(a, x)

lambda_1, x = normalize (x)
print ('Eigenvalue:', lambda_1)
print ('Eigenvector:', x)

Eigenvalue: 7.999988555930031
Eigenvector: [1. -0.49999785 0.50000072]

Example 5:

1 1 3
Compute the numerically largest eigenvalue of P= | 1 5 1 | by power method.
3 11

import numpy as np
def normalize (x):
fac = abs(x).max()
x_n = x / x.max()
return fac, x_n
x = np.array([1, 1,1])
a = np.array([[1,1,3],
[1,5,1],[3,1,1]11)

for i in range(10):
x = np.dot(a, x)

lambda_1, x = normalize (x)
print ('Eigenvalue:', lambda_1)
print ('Eigenvector:', x)

Eigenvalue: 6.001465559355154
Eigenvector: [0.5003663 1. 0.5003663]

10.4 Exercise:

1. Find the eigenvalues and eigenvectors of the following matrices
W P { 25 1
' 1 3
Ans. Eigenvalues are 25.04536102 and 2.95463898; and corresponding eigenvectors
are [0.99897277 — 0.04531442] and [0.04531442 0.99897277].

251 2
b.P=]1 3 0
2 0 —4

Ans. Eigenvalues are 25.18215138, —4.13794129 and 2.95578991; and corresponding

95

eigenvectors are [0.9966522 0.06880398 0.04416339], [0.04493037 —0.00963919 —
0.99894362] and [0.0683056 — 0.99758363 0.01269831].

11 1 2
c. P=| 0 10 O
0 0 12

Ans. Eigenvalues are 11.,10. and 12.; and corresponding eigenvectors are [1. —
0.70710678 0.89442719], [0. 0.70710678 0.], and [0. 0. 0.4472136].

31 1
d P=|1 2 1

1 1 12
Ans. Eigenvalues are 12.22971565, 3.39910684 and 1.37117751; and eigenvectors are
[—0.11865169 —0.85311963 0.50804396], [—0.10808583 —0.49752078 —0.86069189]
and [—0.98703558 0.1570349 0.03317846].

25 1 2
. Find the dominant eigenvalue of the matrix P=| 1 3 0 | by power method.
2 0 —4
Take X, = (1,0,1)T.
Ans. 25.182151221680012
6 1 2
. Find the dominant eigenvalue of the matrix P= | 1 10 —1 | by power method.
2 1 —4
Take Xy = (1,1,1)T.
Ans. 10.107545112667367
5 1 1
. Find the dominant eigenvalue of the matrix P= | 1 3 —1 | by power method.
2 -1 —4

Take Xy = (1,0,0)T.
Ans. 5.544020973078026

26

Computer Science and Engineering Stream

LAB 6: Finding GCD using Euclid’s algorithm.

6.1 Objectives:
Use python
1. to find the GCD of two given integers by Euclid’s algorithm

2. to check whether given two integers are relatively prime or not.

Euclidean algorithm

is useful to find GCD of two numbers. The algorithm is as follows:

The two numbers a and b can be assumed positive such that a < b. Let r; be the
remainder when b is divided by a. Then 0 < ry < a. That is b = aky + ry.

Now let 5 be the remainder when a is divided by r;. That is a = r1ky + ro. Where
0 < 7y < ry. Continue this process of dividing each divisor by the next remainder. At
some stage we obtain remainder 0. The last non-zero remainder is the GCD of a
and 0. This is known as Euclid’s algorithm.

Algorithm analysis:
1. Recursive process - operations are repeated till stopping criterion is reached

2. The output of one step is used as the input of the next step.

Example 1:
Find the GCD of (614,124).

numun

The function is named "gcdl", which takes as inputs two numbers:

1. 'a', and

2. 'b'

where, a < b.

In case the first number is larger than the second number, the function

will interchange the numerals. The answer however remains unchanged.
mnn

def gcdil(a,b):

c = 1 # Assume non-zero remainder
if b < a: # Preprocessing of input
t = b # Temporary variable 't' used to swap values of 'a' and '
b !
b = a
a =t
while (c > 0): # Condition checked: Is the remainder non-zero?
c = bla
print(a,c) # Display divisor and remainder
b = a

o7

a = c
continue # This command gets activated whenever 'while' is TRUE

nimnn

At this stage, 'while' loop no longer works because 'c > 0' is

FALSE.

Remainders can't be negative, so the

nimnn

print ('GCD =',b)

gcdl(614,124)

124 118
118 6

6 4

4 2

20

GCD = 2

Relatively prime

Two numbers a and b are called relatively prime or co-prime if their GCD (also known

as HCF) is equal to 1.
For example: 2 and 19 are relatively prime, because 1 is the largest natural number

that divides both 2 and 19.

Example 2:
Prove that 163 and 512 are relatively prime.

def gcdil(a,b):
c=1;
if b <a:
t=b;
b=a;
a=t;
while (c>0):
c=bla;
print(a,c);
b=a;
a=c;
continue
print ('GCD= ',b);
gcd1(163,512)

163 23
23 2
21

10
GCD= 1

o8

Divides

If GCD of a and b is a, then a divides b.

Note that when GCD(a, b) = a is equivalent to the statement a is that the largest
natural number that divides both a and .

For example: The GCD of 4 and 8 is 4, as 4 is the largest number that divides both
4 and 8. Since 4 is one of the given numbers, 4 divides 8.

Example 4:
Prove that 8 divides 128.

def gcdil(a,b):
c=1;
if b <a:
t=b;
b=a;
a=t;
while (c¢>0):
c=bla;
print(a,c);
b=a;
a=c;
continue
print ('GCD = ',b);
gcd1(8,128)

80
GCD= 8

Example 5:

Calculate GCD of (a,b) and express it as linear combination of a and b. Calculate GCD=d
of 76 and 13 , express th GCD as 76x + 13y = d

from sympy import *

a=int (input ('enter the first number :'))
b=int (input ('enter the second number :'))
sl=1;

s2=0;

t1=0;

t2=1;

ri=a;

r2=b;

r3=(r1%r2);

q = (r1-r3)/r2;

s3=s1-s82%*(q);

t3=tl-t2x*q;

while (r3!=0):
rl=r2;
r2=r3;
sl=s2;

29

s2=s83;

t1=t2;

t2=t3;
r3=(r1%r2);

q = (r1-r3)/r2;
s3=s1-s2%*(q) ;
t3=tl-t2x*q;

print ('the GCD of ',a,' and',b,'is',r2);
print('%d x %d + %d x %d = %d\n'%(a,s2,b, t2,r2));

enter the first number :76
enter the second number :13
the GCD of 76 and 13 is 1
76 x 6 + 13 x -35 =1

Note:

SymPy is a Python library for symbolic mathematics and has an inbuilt command for
GCD.
The functions gcd and iged can be imported to compute the GCD of numbers.

from sympy import gcd
gcd (1235,2315)

from sympy import igcd
iged (3228,93)

6.2 Exercise:

1. Find the GCD of 234 and 672 using Fuclidean algorithm.
Ans: 6

2. What is the largest number that divides both 1024 and 15367
Ans: 512

3. Find the greatest common divisor of 6096 and 50607
Ans: 4

4. Prove that 1235 and 2311 are relatively prime.
Ans: Sketch of proof: if largest common divisor is one, then numbers are relatively
prime (or coprime); and vice versa.

60

5. Are 9797 and 7979 coprime?
Ans: No, their ged is 101

6. Write a function in Python to compute the greatest common divisor of 15625 and
69375.
Alternate tip: SymPy is a library (module) providing ged function
Advanced tip: from sympy.abc import x allows to find GCD of algebraic ex-
pressions.

7. Using a Python module, find the GCD of 4096 and 6144.
Ans: A sample program is as below:

from sympy import *

#from sympy import gcd

answer7 = gcd (4096, 6144)

answer7a = gcd(6144, 4096)

print ('GCD =', answer7, '(lst method),', answer7a (2nd method)')
Desired outcome: GCD = 2048

61

LAB 7: Solving linear congruence of the form ax

b(mod m).

7.1 Objectives:
Use python
1. to find solution of linear congruence.

2. to find multiplicative inverse of a mod p.

Example 1:

Show that the linear congruence 6x = 5(mod 15) has no solution.

from sympy import *
from math importx*5

a=int (input ('enter integer a ')); #7
b=int (input ('enter integer b ')); #9
m=int (input ('enter integer m ')); #15
d=gcd(a,m)
if (b%d!=0):#Reminder calculation
print ('the congruence has no integer solution');
else:
for i in range(l,m-1):
x=(m/a)*i+(b/a)
if (x//1==x) :#check whether x is an integer
print ('the solution of the congruence is ', x)
break

enter integer a 6
enter integer b 5
enter integer m 15
the congruence has no integer solution

Example 2:

Find the solution of the congruence 5z = 3(mod 13).

from sympy import *
#Linear congruence
#Consider ax=b(mod m),x is called the solution of the congrunce

a=int (input ('enter integer a ')); #7
b=int (input ('enter integer b ')); #9
m=int (input ('enter integer m ')); #15
d=gcd(a,m)
if (b%d!=0):

print ('the congruence has no integer solution');
else:

for i in range(l,m-1):

x=(m/a)*i+(b/a)

62

if (x//1==x) :#check whether x is an integer
print ('the solution of the congruence is ', x)
break

enter integer a b5
enter integer b 3
enter integer m 13
the solution of the congruence is 11.0

Note:

The solution of the congruence ax = 1(mod p) is called multiplicative inverse of a mod p.

Example 4:
Find the inverse of 5 mod 13.

from sympy import gcd
#Linear congruence
#Consider ax=b(mod m),x is called the solution of the congrunce

a=int (input ('enter integer a ')); #7
b=int (input ('enter integer b ')); #9
m=int (input ('enter integer m ')); #15
d=gcd(a,m)
if (b%d!=0):
print ('the congruence has no integer solution');
else:
for i in range(l,m-1):
x=(m/a)*i+(b/a)
if (x//1==x) :#check whether x is an integer
print ('the solution of the congruence is ', x)
break

enter integer a b5
enter integer b 1
enter integer m 13
the solution of the congruence is 8.0

7.2 Exercise:

1. Find the solution of the congruence 12z = 6(mod 23).
Ans: 12

2. Find the multiplicative inverse of 3 mod 31.
Ans: 21

3. Prove that 122 = 7(mod 14) has no solution. Give reason for the answer.
Ans: Because GCD(12,14)=2 and 2 doesnot divide 7.

63

Electrical & Electronics Engineering Stream

LAB 6: Programme to compute area, volume and cen-
ter of gravity

6.1 Objectives:

Use python
1. to evaluate double integration.
2. to compute area and volume.

3. to calculate center of gravity of 2D object.

Syntax for the commands used:

1. Data pretty printer in Python:
pprint ()

2. integrate:

integrate (function,(variable, min_limit, max_limit))

6.2 Double and triple integration
Example 1:

1 =z
Evaluate the integral [[(z? + y?)dydx
00

from sympy import *

X,y,z=symbols('x y z')

wl=integrate (x**x2+y**x2,(y,0,x),(x,0,1))
print (wl)

1/3

Example 2

33—z 3—x— y
Evaluate the integral [[[(xyz)dzdydx
00 0

from sympy import *

x=Symbol ('x"')

y=Symbol('y"')

z=Symbol('z")

w2=integrate ((x*y*z) ,(z,0,3-x-y) ,(y,0,3-x),(x,0,3))
print (w2)

81/80

64

Example 3:
Prove that [[(2* + y*)dydz = [[(2* + y*)dxdy

from sympy import *
x=Symbol('x"')

y=Symbol('y"')

z=Symbol('z")

w3=integrate (x**2+y**2,y,x)
pprint (w3)

wi=integrate (x**x2+y**x2,x,y)
pprint (w4d)

6.3 Area and Volume

Area of the region R in the cartesian form is [[dady
R

Example 4:

a (b/a)Va?—x?

Find the area of an ellipse by double integration. A=4 [dydx
0

O%

from sympy import *

x=Symbol ('x"')

y=Symbol ('y"')

#a=Symbol ('a"')

#b=Symbol ('b")

a=4

b=6
w3=4xintegrate(1,(y,0,(b/a)*sqrt(a**2-x**x2)),(x,0,a))
print (w3)

24 . 0*pi

Area of the region R in the polar form is [[rdrdf
R

Example 5:

Find the area of the cardioid r = a(1 + cosf) by double integration

from sympy import *
r=Symbol('r')
t=Symbol('t"')
a=Symbol('a')

#a=4

w3=2xintegrate(r,(r,0,a*x(1+cos(t))),(t,0,pi))
pprint (w3)

65

6.4 Volume of a solid is given by [[[dxdydz
v

Example 6:
Find the volume of the tetrahedron bounded by the planes x=0,y=0 and z=0, Z+¥+4% =1

C
from sympy import *
x=Symbol ('x"')
y=Symbol ('y")
z=Symbol('z")
a=Symbol('a')
b=Symbol('b"')
c=Symbol('c')
w2=integrate(1,(z,0,c*x(1-x/a-y/b)) ,(y,0,b*x(1-x/a)),(x,0,a))
print (w2)

axb*c/6

6.5 Center of Gravity

Find the center of gravity of cardioid . Plot the graph of cardioid and mark the center
of gravity.

import numpy as np

import matplotlib.pyplot as plt

import math

from sympy import *

r=Symbol('r"')

t=Symbol('t"')

a=Symbol('a')

Il=integrate(cos (t)*r**2,(r,0,a*x(1+cos(t))),(t,-pi,pi))
I2=integrate(r,(r,0,a*(1+cos(t))),(t,-pi,pi))
I=I1/1I2

print (I)

I=I.subs(a,5)

plt.axes(projection = 'polar')

a=>b

rad = np.arange(0, (2 * np.pi), 0.01)
plotting the cardioid
for i in rad:

r = a + (a*np.cos(i))

plt.polar(i,r,'g."')

plt.polar(0,I,'r.")
plt.show ()

66

6.6

Exercise:

1z
. Evaluate [[(z + y)dydx
0

0
Ans: 0.5
log(2) z x+log(y)
. Find the [[[(e"tv"*)dzdydx
0 0 0
Ans: -0.2627
Find the area of positive quadrant of the circle 22 + 3? = 16
Ans: 4w
Find the volume of the tetrahedron bounded by the planes x=0,y=0 and z=0,
sEvi=l
Ans: 4

67

LAB 7: Evaluation of improper integrals, Beta and
Gamma functions

7.1 Objectives:
Use python

1. to find partial derivatives of functions of several variables.

2. to find Jacobian of fuction of two and three variables.

Syntax for the commands used:
1. gamma

math.gamma (x)

Parameters :
x : The number whose gamma value needs to be computed.

2. beta

math.beta(x,y)

Parameters :

x ,y: The numbers whose beta value needs to be computed.

3. Note: We can evaluate improper integral involving infinity by using inf.

Example 1:

Evaluate f e *dx.
0

from sympy import =*

x=symbols('x"')
wl=integrate (exp(-x) ,(x,0,float('inf"')))
print (simplify (w1))

Gamma function is z(n) = [~ e "2" dx

Example 2:
Evaluate I'(5) by using definition

from sympy import *

x=symbols('x"')

wl=integrate (exp(-x)*x**4,(x,0,float('inf')))
print (simplify(wl))

24

68

Example 3:

Evaluate | e cos(4t)dt . That is Laplace transform of cos(4t)
0

from sympy import *

t,s=symbols('t,s"')

for infinity in sympy we use 00
wl=integrate (exp(-s*t)*cos(4*t),(t,0,00))
display(simplify (wl))

Example 4:
Find Beta(3,5), Gamma(5)

#beta and gamma functions

from sympy import beta, gamma
m=input('m :');

n=input('n :');

m=float (m) ;

n=float (n) ;

s=beta(m,n) ;

t=gamma (n)

print ('gamma (',n,') is %3.3f'%t)
print ('Beta (',m,n,') is %3.3f'Js)

m :3

n :5

gamma (5.0) is 24.000
Beta (3.0 5.0) is 0.010

Example 5:
Calculate Beta(5/2,7/2) and Gamma(5/2).

#beta and gamma functions

If the number is a fraction give it in decimals.

from sympy import beta, gamma
m=float (input('m : '));
n=float (input('n :'));

s=beta(m,n);

t=gamma (n)

print ('gamma (',n,') is %3.3f'%t)
print('Beta (',m,n,"') is %3.3f '%s)

Eg 5/2=2.5

m: 2.5

n :3.5

gamma (3.5) is 3.323
Beta (2.5 3.5) is 0.037

69

Example 6:

Verify that Beta(m,n) = Gamma(m)Gamma(n)/Gamma(m + n) for m=5 and n=7
from sympy import beta, gamma
m=5;
n=7;
m=float (m);
n=float (n) ;
s=beta(m,n);
t=(gamma (m) *gamma (n)) /gamma (m+n) ;
print(s,t)
if (abs(s-t)<=0.00001):
print ('beta and gamma are related')
else:
print ('given values are wrong')

0.000432900432900433 0.000432900432900433
beta and gamma are related

7.2 Exercise:
1. Evaluate [e ‘cos(2t)dt
0
Ans: 1/5

2. Find the value of Beta(5/2,9/2)
Ans: 0.0214

3. Find the value of Gamma(13)
Ans: 479001600

4. Verify that Beta(m,n) = Gamma(m)Gamma(n)/Gamma(m + n) for m=7/2 and

n=11/2
Ans: True

70

Mechanical & Civil Engineering Stream

LAB 6: Solution of second order ordinary differential
equation and plotting the solution curve

6.1 Objectives:
Use python

1. to solve second order differential equations.
2. to plot the solution curve of differential equations.

A second order differential equation is defined as
d? d
d—‘g + P(a:')d—y + Q(x)y = f(x), where P(z), Q(x) and f(x) are functions of z.
x x
When f(z) = 0, the equation is called homogenous second order differential equa-

tion. Otherwise, the second order differential equation is non-homogenous.

Example 1:
Solve: y"” — 5y’ 4+ 6y = cos(4x).

Import all the functions available in the SymPy library.
from sympy import *

#For the ease of representing the
x=Symbol ('x"')

y=Function("y") (x)
C1,C2=symbols('C1,C2"')

yl=Derivative (y,x)
y2=Derivative (yl,x)

print ("Differential Equation :\n")
diff1=Eq(y2-5*yl1+6*y-cos(4*x),0)

display (diff1)

print ("\n\nGeneral solution: \n")
z=dsolve (diff1)

display(z)
Let cl=1, c2=2
PS=z.subs({C1:1,C2:2})

print ("\n\n Particular Solution:\n")
display (PS)

71

Example 2:

Plot the solution curve (particular solution) of the above differential equation.

import matplotlib.pyplot as plt
import numpy as np

x1l=np.linspace(0,2,1000)
y1=2*np.exp(3*xl+np.exp(2*xl)-np.sin(4*x1)/25-np.cos (4*x1)/50)

plt.plot(xl,yl)
plt.title("Solution curve")
plt.show ()

Example 3:

Plot the solution curves of y” + 2y’ + 2y = cos(2x),y(0) = 0,3'(0) =0
We can turn this into two first-order equations by defining a new depedent variable.
For example,
2=y = 2 +2z+2y=cos(2z),2(0) =y(0) = 0.
y =2zy(0)=0
2" = cos(2x) — 2z — 2y; 2(0) = 0.

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

def dU_dx (U, x):
Here U is a vector such that y=U[0] and z=U[1]. This function
should return [y', z']
return [U[1], -2%U[1] - 2*U[0] + np.cos(2*x)]

vo = [0, O]
xs = np.linspace(0, 10, 200)
Us = odeint (dU_dx, UO, xs)

ys Us[:,0]# all the rows of the first column
ys1=Us[:,1]# all the rows of the second column

plt.xlabel ("x"

plt.ylabel ("y")
plt.title("Solution curves")
plt.plot(xs,ys,label="y"');
plt.plot(xs,ysl,label="z");
plt.legend ()

plt.show ()

Example 4:

Solve: 3‘57;" + 2% — 22 = cos(2x) with 2(0) = 0;2/(0) = 0 and plot the solution curve.

72

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

def

f(u,x):

return(ul[1],-2*ul1]+2*ul[0]+np.cos (2*x))

y0=00,0]
xs=np.linspace(1,10,200)

us=odeint (f,y0,xs)

ys=us[:,0]
plt.plot(xs,ys,'r-")
plt.xlabel ('t values')
plt.ylabel('x values')
plt.title('Solution curve')
plt.show ()

6.2 Exercise:

1. An object weighs 2 kg stretches a spring 6 m. The spring is then released from
the equilibrium position with an upward velocity of 16 m/sec. The motion of the
object is denoted by z” + (82)z = 0 where w = 8 is the angular frequency. Find
x(t) using initial conditions z(0) = 0 and 2/(0) = —16 and plot the solution.

Ans: x(t) = —2sin(8¢)

Sketch of all solutions in this exercise: Note that x(t) = ¢; cos(8t) + ¢ sin(8t),
where ¢; = 2(0) = 0 and ¢, = 2/(0) = —16.

Hint: Use from scipy.integrate import odeint and check the first column of
the simulation result.

2. The mass of 16 kg stretches a spring by g such that there is no damping and no exter-
nal forces acting on the system. The spring is initially displaced 6 inches upwards
from its equilibrium position and given an initial velocity of 1 ft/sec downward.
Find the displacement at any time ¢, u(t) denoted by the second order differential

1 d? 1
equation Q@u(t) + 18u(t) = 0 with initial conditions u(0) =) and v/(0) =1
and plot the solution curve.
Ans: u(t) = —1 cos(6t) + ¢ sin(6¢)
https://tutorial.math.lamar.edu/classes/de/Vibrations.aspx

3. The instantaneous position of the base of a stamping machine is given by the

solutions of the second order differential equation y” 4+ 100y’ = sin(10t). If the
initial conditions are denoted by y(0) = 0.005 and y'(0) = 0, then find the position
of the machine base and draw a plot for the solution.

73

https://tutorial.math.lamar.edu/classes/de/Vibrations.aspx

Ans: 55 cos(10t) + 55 sin(10¢) + 55 cos(10¢)

https://www.sjsu.edu/me/docs/hsu-Chapter’,208%20Second’20order’,20DEs_04-25-19.
pdf

74

https://www.sjsu.edu/me/docs/hsu-Chapter%208%20Second%20order%20DEs_04-25-19.pdf
https://www.sjsu.edu/me/docs/hsu-Chapter%208%20Second%20order%20DEs_04-25-19.pdf

LAB 7: Solution of differential equation of oscillations
of a spring with various load

7.1 Objectives:
Use python

1. to solve the differential equation of oscillation of a spring.
2. to plot the solution curves.

The motion of the spring mass system is given by the differential equation m%% dt2 +
afli—f + kx = f(t) where, m is the mass of a spring coil,z is the displacement of the mass
from its equillibrium position, a is damping constant, k is spring constant.

Case 1: Free and undamped motion -a=0,f(t)=0

Differential Equation : m%% + kz =0

dt2
Case 2: Free and damped motion: f (t)=0
Differential Equation : m%Z dtQ +adz % T k=0

Case 3: Forced and damped motion: Differential Equation : m%Z dt2 +a% + kx = f(t)

Example 1:

Solve 4 dtQ + 642z = 0,2(0) = 7,2'(0) = 1 and plot the solution curve.

1
4
import numpy as np

from scipy.integrate import odeint
import matplotlib.pyplot as plt

def f(u,x):
return(ul1],-64*ul0])

yo=[1/4,1]
xs=np.linspace(0,5,50)

us=odeint (f,y0,xs)
ys=us[:,0]

print (ys)
plt.plot(xs,ys,'r-"')

plt.xlabel ('Time')
plt.ylabel ('Amplitude')

plt.title('Solution of free and undamed case')

plt.grid(True)
plt.show ()

5

Example 2:

Solve 9‘;27;” +2% 4 1.20 = 0,z(0) = 1.5,2/(0) = 2.5 and plot the solution curve.

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

def f(u,x):
return(ul1],-(1/9)*(1.2*xul1]+2*u[0]))

y0=02.5,1.5]
xs=np.linspace(0,20*np.pi,2000)

us=odeint (f,y0,xs)
print (us)
ys=us[:,0]

plt

plt.
plt.

plt.
plt.
plt.

.plot(xs,ys,'r-")

xlabel ('Time ')
ylabel ('Amplitude')

title('Solution of free and damped case')
grid (True)
show ()

7.2 Exercise:

1.

An object weighs 2 kg stretches a spring 6 m. The spring is then released from
the equilibrium position with an upward velocity of 16 m/sec. The motion of the
object is denoted by z” + (82)x = 0 where w = 8 is the angular frequency. Find
x(t) using initial conditions z(0) = 0 and 2/(0) = —16 and plot the solution.

Ans: z(t) = —2sin(8t)

Sketch of all solutions in this exercise: Note that x(t) = ¢; cos(8t) + ¢ sin(8t),
where ¢; = 2(0) = 0 and ¢, = 2/(0) = —16.

Hint: Use from scipy.integrate import odeint and check the first column of
the simulation result.

The mass of 16 kg stretches a spring by % such that there is no damping and no exter-
nal forces acting on the system. The spring is initially displaced 6 inches upwards
from its equilibrium position and given an initial velocity of 1 ft/sec downward.

Find the displacement at any time ¢, u(t) denoted by the second order differential
2

equation %%u(t) + 18u(t) = 0 with initial conditions u(0) = —% and v (0) =1
and plot the solution curve.

Ans: u(t) = —3 cos(6t) + sin(6t)
https://tutorial.math.lamar.edu/classes/de/Vibrations.aspx

76

https://tutorial.math.lamar.edu/classes/de/Vibrations.aspx

	Objectives:
	Example: Plotting points(Scattered plot)
	Example: Plotting a line(Line plot)
	Functions
	Implicit Function
	Plot the following

	Polar Curves
	Parametric Equation
	Exercise:
	Objectives:
	1. Angle between two polar curves
	2. Radius of curvature
	Parametric curves
	Exercise:
	Objectives:
	I. Partial derivatives
	II Jacobians
	Exercise:
	Objectives:
	Maxima and minima problem
	Taylor series expansion
	Maclaurin Series
	L'Hospital' rule
	Exercise:
	Objectives:
	Solution curves
	Exercise:
	Objectives:
	Solution of system of equations
	System of Non-homogenous Linear Equations
	Graphical representation of solution
	Exercise:
	Objectives:
	Exercise:
	Objectives:
	Eigenvalues and Eigenvectors
	Largest eigenvalue and corresponding eigenvector by Rayleigh method
	Exercise:
	Objectives:
	Exercise:
	Objectives:
	Exercise:
	Objectives:
	Double and triple integration
	Area and Volume
	Volume of a solid is given by Vdxdydz
	Center of Gravity
	Exercise:
	Objectives:
	Exercise:
	Objectives:
	Exercise:
	Objectives:
	Exercise:

