Contact Hours:39 CIE:50 Marks SEE: 50 Marks Exam Duration:3 Hrs.

Course Learning Objectives (CLOs):

To have an insight into Fourier series, Fourier transforms, Z-transforms. To develop the proficiency in variational calculus. To solve algebraic, transcendental and ordinary differential equation arising inengineering applications using numerical methods.

Course Outcomes (COs):

Descri	ption of the Course Outcome:	Mapping to	POs(1-12)	
At the able to	end of the course the student will be:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Express periodic function as a Fourier series and obtain the various harmonics of the Fourier series expansion for the given numerical data.			1,2
CO-2	Transform the given function using Fourier transforms depending on the nature of engineering applications. Apply Z-transform for series of mathematical conversion to mathematical framework used as digital filter. Solve difference equations using Z-transform.			1,2
CO-3	Apply the knowledge of numerical methods to fit an interpolating curve to the experimental data and obtain solution of transcendental equation.			1,2
CO-4	Solve first and second order ordinary differential equations arising in engineering problems using single step and multi-step numericalmethods.			1,2
CO-5	Determine the extremals of functional using calculus of			1,2

POs	1	2	3	4	5	6	7	8	9	10	11	12
Mapping Level	1.0	2.0										

Pre-requisites: 1. Differentiation of function.

2. Integration of function.

Contents:

Unit-I

Fourier Series: Periodic functions, Dirichlet's condition. Fourier series of periodic functions of period 2 and arbitrary period. Half- range Fourier series. Practical harmonic analysis, examples from engineering field. **7L + 1T**

Unit-II

Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier transforms.(Simple problems).

Z-Transforms and Difference Equations: Z-transform- definition, Standard Z-transforms, Damping and shifting rules, Initial value and Final value theorems (without proof) problems. Inverse Z-transform. Simple problems. Difference equations-basic definition. Application of Z-transform to solve Difference equations. **7L + 2T**

Unit-III

ElementaryNumericalMethods:

Solution of algebraic and transcendental equations: Newton-Raphson's and Regula-Falsi methods (onlyformulae) -Illustrative examples.

Finite differences.Interpolation usingNewton's forwardand backwarddifference formulae, Newton's divided difference andLagrange's formulae (formulae withoutproof).

7L +

1T

Unit-IV

Numerical Solutions of Ordinary Differential Equations (ODE's): Numerical solution of ODE's of first order and first degree- Taylor's series method, Modified

Euler's method. Runge –Kutta's method of fourth order, Milne's predictor and corrector method (Noderivations of formulae). Problems. 6L + 1T

Unit-V

Numerical integration: Simpson's (1/3)rdrule, Simpson's (3/8)th rule and Weddle's rule (without proof) & problems. **Calculus of Variations:** Variation of function and functional, variational problems, Euler's equation (without proof), Geodesics(plane), Hanging chain problems.

6L + 1T

- 1. **B.S. Grewal**: HigherEngineeringMathematics, KhannaPublishers, 44th Ed., 2017.
- 2.**E.Kreyszig**: Advanced EngineeringMathematics,John Wiley&Sons, 10th Ed.(Reprint).2016.
- 3. **Srimanta Pal et al**: Engineering Mathematics, Oxford University Press, 3rd Edition, 2016.
- 4. **B. V. Ramana**: "Higher Engineering Mathematics" 11th Edition, TataMcGraw-Hill, 2010.

Contact Hours: 39

Course Learning Objectives (CLOs): This course focuses on the following learning perspectives:

- The basic terminologies of mathematical and logical reasoning, functions, and relations associated with its properties and corresponding practical examples.
- Various counting principle methods to solve complex problems in combinatorics.
- Demonstration with examples, the basic terminologies of graphs and its types.
- Identify the applications of mathematical structures in other fields of computer science such as data structures and algorithms, databases, networks, operating systems etc.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to	POs(1-12) /	PSOs (13-16)
At the able to	end of the course the student will be or	Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Verify the correctness of an argument using various techniques and strategies.	1	2	4,15
CO-2	Solve problems using counting techniques and combinatorics.	1	2	4,15
CO-3	Solve the problems on different types of functions, relations, and Generating functions.	1	2	4,13
CO-4	Solve the problems pertaining to graphs and related discrete structures.	1	2	4,13
CO-5	Explain the concepts and properties of algebraic structures such as groups and coding theory.	1	2	4,15

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	3.0	2.0	-	1.0	-	-	-	-	-	-	-	-	1.0	-	1.0	-

Pre-requisites:None

Contents:

Unit-I

Fundamentals of Logic: Basic Connectives and Truth Tables, Logic Equivalence – The Laws of Logic, Logical Implication – Rules of Inference, The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems**8L + 1T**

Unit-II

Fundamental Counting: The Rules of Sum and Product, Permutations and Combinations, The Binomial coefficients, The Pigeon-hole Principle.

Relations: Cartesian Products and Relations, Properties of Relations, Equivalence Relations and Partitions**8L + 1T**

Unit-III

Functions: Definition, Plain and One-to-One, Onto Functions, Function Composition, Inverse Functions, Directed Graphs, Hasse Diagrams. 6L + 1T

Unit-IV

Generating Functions: Definitions and examples, Exponential Generating Functions. **Recurrence Relations:** Recursive definitions. First Order Linear Recurrence Relations, Second order linear homogeneous recurrence relation with constant coefficients.**6L + 1T**

Unit-V

Graphs: Elements of graph theory, Graphs and its properties, Directed graphs, Subgraph, Complements, Planar graphs, Euler Graph, Hamiltonian Graphs, Graph Colouring, Representation of graphs, Trees. Application to engineering. **6L + 1T**

- 1) Ralph P Grimaldi&B.V.Ramana "Discrete and Combinatorial Mathematics", 5th Edition, Pearson Education, 2006.
- 2) Kenneth H Rosen, "Discrete Mathematics and its Applications", 7th Edition, McGraw Hill, 2012.

- 3) Kolman B & Busby R C, "Discrete and Mathematical Structures for Computer Science", 5th Edition, Prentice Hall of India 2004.
- 4) Thomas Kosay, "Discrete Mathematics with Applications", Elsevier, 2005, Reprint 2008.

Contact Hours: 39

Course Learning Objectives (CLOs):

The course focuses on learning mathematical model for a signal, properties of a signals and systems, representation of a signal in different domains. Also, the courseemphasizes on relation between Fourier representations, sampling and reconstruction of a signal.

Course Outcomes (Cos):

Descri	ption of the Course Outcome:	Mapping to F	Pos(1-12)/PS	SOS(13,14)
	end of the course the student	Substantial		Slight
will be	able to	Level (3)	Level (2)	Level (1)
	Analyze different types of			
CO-1	signals. Systems and its	1	2	
	properties.			
	Analyzethetime domain			
CO-2	signalsand solve for the system	1,2		13
	response.			
CO-3	Analyzethe frequency domain	1	2	
CO-3	signals	I		
	Relate different Fourier			
CO-4	representations and applyit for	1	2	3, 13
	various applications.			
	Apply the Z- transform to			
CO-5	analyze discrete-time signals	1	2	
	and systems			

Pos/PSOs	1	2	3	4	6	7	8	9	10	11	12	13	14
Mapping	3	2.2	1	-	-	-	-	-	-	•	-	1	-
Level													

Pre-requisites: Calculus

Unit-I

Introduction: Definitions of signals and systems, classification of signals, basic operations on signals, elementary signals, Properties of systems.

6L + 1T

Unit-II

Time Domain Representation: Convolution, Interconnection of LTI systems, Relations between LTI system properties and impulse Response, Solving Differential and Difference Equations, Block diagram representation. **7L + 1T**

Unit-III

Fourier Representations: Complex Sinusoids and Frequency response of LTI Systems, Fourier Representations for four classes of signals: Discrete Time Fourier Series(DTFS), Continuous Time Fourier series(FS), Discrete Time Fourier Transform(DTFT), Continuous Time Fourier Transform(FT).

7L + 1T

Unit-IV

Properties of Fourier Representations: Linearity and Symmetry Properties, Convolution Property, Differentiation Property, Integration Property, Time, and Frequency Shift Property, MultiplicationProperty, Scaling Property, Parseval's Relationships, Frequency response of LTI systems.

Applications of Fourier Representations: Relating FT to FS, Relating DTFT to DTFS, FT to DTFS. **7L + 1T**

Unit-V

z-Transforms: z-transform, properties of Region of Convergence, Properties of z transform, Inverse z-transform: Partial Fraction Expansion, Power Series Expansion, Unilateral z-transform, Transfer function. **7L + 1T**

- 1. ErwinKreyszig:AdvancedEngineeringMathematics,JohnWiley&Sons 10thedition, 2016.
- 2.B.S. Grewal: HigherEngineeringMathematics, KhannaPublishers, 44 hedition,2017.
- 3. Simon Haykin, Barry Van Veen, "Signals and Systems", 2/e, Wiley Publications, reprint 2009.
- 4. H. P Hsu and R. Ranjan, "Signals and Systems", Schaum's outlines, TMH, 2006.

Contact Hours:39

Course Learning Objectives (CLOs):

To have an insight into Fourier transforms, Z-transforms. Use statistical methods for analyzing, interpreting and presenting data. To transform given data into meaningful information to help in decision-making. Investigate a sequence of repeated trails of an experiment through Markov process.

Course Outcomes (COs):

-	otion of the Course Outcome: end of the course the student will be	Mapping t PSO (1 to 3)	o POs(1	to 12)/
able to:		Substantial Level (3)	Moderate Level (2)	Slight Level (1)
CO-1	Illustrate the principles of counting and fundamentals of logic to solve elementary counting and logic arguments.			1,2
CO-2	Design different practical models for estimation and prediction.		1,2	
CO-3	Apply discrete and continuous probability distributions in analyzing the probability models arisingin engineeringfield.		1,2	
CO-4	Explain Markov chains and describe stochastic process.			1,2
CO-5	Apply Fourier transforms for series of mathematical conversion and Solve difference equations			1,2

POs	1	2	3	4	5	6	7	8	9	10	11	12
Mapping Level	1.4	1.4										

Pre-requisites: 1. Basic probability theory 2. Statistical averages.

3. Differentiation, partial differentiation and integration of functions.

Contents:

Unit-I

COMBINATORICS: Principles of counting: The rules of sum and product, permutations. Combinations, Catalan numbers, the principle of inclusion and exclusion. Derangements.

Fundamentals of Logic: Basic connectives, Tautologies, Logical equivalence, Quantifiers and its use. **6L+1T**

Unit-II

Statistical Methods: Correlation and regression-Karl Pearson's coefficient of correlation and rank correlation-problems **Curve Fitting**: Curve fitting by the method of least squares.

Sampling Theory: Introduction to sampling distributions, standard error, Type-I and Type-II errors. Test of hypothesis for means, student's t-distribution, Chisquare distribution as a test of goodness of fit. **7L+1T**

Unit-III

Probability Distributions: Review of basic probability theory, Random variables, (discrete and continuous), probability mass/density functions. Binomial, Poisson, exponential and normal distributions-problems (No derivation for mean and standard deviation)-Illustrative examples.

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation.**7L+1T**

Unit -IV

MARKOV CHAIN AND QUEUING THEORY: Markov Chain, Probability vectors, stochastic matrices, fixed point vector, regular stochastic matrices. Higher transition probabilities, stationary distribution of regular Markov chains. Queuing Models: Concept of Queue, M/M/1 queuingsystem.**7L+1T**

Unit - V

Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier transforms. Z-Transforms and Difference Equations: Z-transform- definition, Standard Z transforms, Damping and shifting rules, Initial value and Final value theorems (without proof) with problems. Inverse Z-transform.Difference equations-basic definition.Application of Z-transform to solve Difference equation.**7L+1T**

- **1.** Ralph GrimaldiandB.V.Ramana, "Discrete and Combinatorial Mathematics(An applied introduction) ", 5th edition,2004.
- 2. B.S. Grewal, "HigherEngineeringMathematics", KhannaPublishers,44th edition.