22POP13 Pri

Principles of Programming Using C

(2-0-2) 3

Contact Hours: 40 Theory + 12 Lab slots

Course Learning Objectives (CLOs): The course focuses on the following learning results:

- Developing the problem solving skills that can be applied to problems in different areas which enables students to take-up subsequent course work and professional career.
- Provides a comprehensive study of the features of C programming language.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to POs(1-12)/ PSOs (13-16)								
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)						
CO-1	Design a solution by analyzing thegiven problem scenario and represent it using algorithm / flowchart.	-	1,2,3	-						
CO-2	Explain the C language primitives, language principles and use themin writing simpleprograms.	-	1,2,3	-						
CO-3	WriteaCprogramusingpropercontrolstructurestosolvesimpleproblems.	-	1,2,3	-						
CO-4	Write a C program using arrays and strings to solve simple problems.	-	2,6	-						
CO-5	Explain the usage and the need for writing modular programs and demonstrate its use in writing programs.	-	-	1,2,3						

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping	1.7	1.8	1.7	-	-	2.0	-	-	-	-	-	-	-	-	-	-
Level																

Pre-requisites: NIL

Contents:

Unit-I

Flow-Chart and Algorithm: Solving various scientific, engineering and business related problems of varying complexity.

Fundamentals of C Programming Language: Program structure and execution. Character set, data types, operators, type conversion, expression evaluation. Input and output statements. **8 Hrs**

Unit-II

Decision making and Branching: if statement and its different forms, switch statement. 8 Hrs

Unit-III

Decision making and Looping: loops and their behavior – entry and exit controlled loops, conditional and unconditional jump statements, Nested loops. **8 Hrs**

Unit-IV

Arrays: Single and multidimensional arrays, advantages and disadvantages of arrays, searching and sorting

Strings: Definition, Different ways of reading and printing strings, string handling functions, applications. 8 Hrs

Unit-V

Modular Programming:Declaration, definition and use of functions, passing
parameters to function, Recursion.8 Hrs

Laboratory Component:

Working Platform: Linux Operating System

Expected Coding Practices:

1. Use of Good Programming practices: Declaration of variables, Indentation, Documentation, Simplicity of logic, Efficiency of logic, uniformity etc.

- 2. Generic and Reusable code.
- 3. Inclusions of exceptional cases.
- 4. Better usability

Course Contents:

Programming exercises of varying complexity, to meet the learning results stated in course outcomes for this course.

Reference Books:

- 1 E Balagurusamy, "Programming in ANSI C", 6th Edition, Tata McGraw Hill, 2012.
- **2** Brian W Kernighan & Dennis M Ritchie, "The C programming language", 2nd Edition, Prentice-Hall India, 2004.
- **3** R.G. Dromey., "How to solve it by Computer", Prentice-Hall India,2008
- **4** B A Forouzan and R F Gilberg, "Computer Program: A structured programming approach using C", 3rd Edition, Thomson Learning,2005
- **5** Brain W. Kernighan and Rob Pike, "The Practice of Programming", Pearson Education Inc.2008.

22PLC25E

Advanced C Programming

(2-0-2) 3

Contact Hours: 40 Theory + 12 Lab slots

Course Learning Objectives (CLOs): This course focuses on the following learning perspectives:

- Explore user-defined data structures like structures and pointers in implementing solutions to problems.
- Selection of appropriate data structures for solving a given problem.

Course Outcomes (COs):

Descr	iption of the Course Outcome:	Mapping to POs(1-12) / PSOs (13-16)							
At the able to	end of the course the student will be o:	Substantial Level (3)	Moderate Level (2)	Slight Level (1)					
CO-1	Explain the usage and the need for writing programs using structures, unions and pointers.	-	1,2,3	-					
CO-2	Solve real time problems using concepts of dynamic memory allocation and storage classes.	-	1,2,3	-					
CO-3	Construct Programming solutions using user defined functions and files for storage.	-	1,2,3	-					
CO-4	Demonstrate sorting and searching algorithms.	-	1,2,3	-					
CO-5	Select appropriate programming constructs and data structures to build solutions to variety of problems.	-	1,2,3	12,14					

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping	2.0	2.0	2.0	-	-	-	-	-	-	-	-	1.0	-	1.0	-	-
Level																

Pre-requisites: Knowledge of fundamental Principles of Programming.

Contents:

Unit-I

Pointers: Introduction, Understanding Pointers, Accessing the address of a variable, Declaration and Initialization of Pointers, Accessing a variable through its pointer, Chain of pointers, Pointer expressions, Pointer Increments and scale factor, Pointers and arrays, Pointers and character strings, Pointers as Function arguments, Functions returning pointers. **8 Hrs**

Unit-II

Structures and Unions: Introduction, Defining a Structure, Declaring structure variables, Accessing structure members, structure initialization, copying and comparing structure variables, Operations on Individual Members, Arrays of structures, Arrays within structures, Structures within structures, Structures and Functions, Self-referential structures, Unions. **8 Hrs**

Unit-III

Storage Classes: Storage class specifiers, Local variable storage class: auto, register, and static. Global variable storage class: default global variable, extern, and static.

Dynamic Memory allocation: Motivation for dynamic memory requirement, Allocating a block of memory – malloc, allocating multiple blocks of memory – calloc, Releasing the used memory – free, Altering the size of a block – realloc. **8 Hrs**

Unit-IV

File Handling: Introduction, Defining an opening a file, Closing a file, Input and Output Operations on Files, Error Handling during IO operations, Random Access to Files, Command line arguments. **8 Hrs**

Unit-V

Sorting: Introduction, Bubble Sort, Selection Sort, Insertion Sort. **Searching:** Introduction, Linear Search, Binary Search.

8 Hrs

Reference Books:

- E Balagurusamy, "Programming in ANSI C", 6th Edition, Tata McGraw Hill, 2012.
- **2** Yashavant Kanetkar, "Understanding Pointers in C and C++", 5th Edition,

BPB Publications, 2019.

- **3** Reema Thareja, "Computer fundamentals and Programming in C", Oxford University, Second Edition, 2017.
- **4** B A Forouzan and R F Gilberg, "Computer Program: A structured programming approach using C", 3rd Edition, Thomson Learning, 2005
- **5** Brain W. Kernighan and Rob Pike, "The Practice of Programming", Pearson Education Inc. 2008.